

DE LA RECHERCHE À L'INDUSTRIE

Abinit performances for systems with many atoms: Some analyses and perspectives

L. Baguet^{1,2}, M. Torrent^{1,2}

¹CEA, DAM, DIF, F-91297 Arpajon, France
²Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

1. Small benchmarking on 255 atoms of Ti

2. Impact of non-local operations : promising new conjugate-gradient implementation

1. Small benchmarking on 255 atoms of Ti

2. Impact of non-local operations : promising new conjugate-gradient implementation

Commissariat à l'énergie atomique et aux énergies alternatives

Cea Performances dependencies

Performances of Abinit depend on many factors :

- Self-Consistent Field method
- Diagonalization Alg. (CG, LOBPCG, Chebyshev filtering, RMM-DIIS)
- parallelization scheme (Number of MPI processes? Threads?)
- libraries used (for FFT and linear algebra)
- compilation options (vectorization, ...)

In addition to all that :

- best choice depends on the system and the computer architecture
- architectures evolve with time... (new types of CPU, more GPUs soon)

Cea Performances dependencies

Performances of Abinit depend on many factors :

- Self-Consistent Field method
- Diagonalization Alg. (CG, LOBPCG, Chebyshev filtering, RMM-DIIS)
- parallelization scheme (Number of MPI processes? Threads?)
- libraries used (for FFT and linear algebra)
- compilation options (vectorization, ...)

In addition to all that :

- best choice depends on the system and the computer architecture
- architectures evolve with time... (new types of CPU, more GPUs soon)

The only solution to understand these effects is to measure performances

Cea Performances dependencies

Performances of Abinit depend on many factors :

- Self-Consistent Field method
- Diagonalization Alg. (CG, LOBPCG, Chebyshev filtering, RMM-DIIS)
- parallelization scheme (Number of MPI processes? Threads?)
- libraries used (for FFT and linear algebra)
- compilation options (vectorization, ...)

In addition to all that :

- best choice depends on the system and the computer architecture
- architectures evolve with time... (new types of CPU, more GPUs soon)

The only solution to understand these effects is to measure performances

Cea An example : 255 atoms of Ti

System :

- $N_{at} = 255$ atoms (Ti), 2048 bands
- Computation at Γ : nkpt = 1
- cutoff energy : 5 Ha (10 Ha for double grid)

Architecture :

- Intel Skylake (24 cores per processors) 2 processors per node cores
- Total of 256 cores used

Algo	MPI	Threads	npfft	npband	bandpp	Nbloc	T it>3 (s)	Mem (Mb)	Mem/core
LOBPCG	64	4	1	64	16	2	102	1437	359
LOBPCG	32	8	1	32	16	4	29	1176	147
LOBPCG	16	16	1	16	32	4	30	1281	80
Cheb. Fi.	256	1	4	64	х	х	31	737	737
Cheb. Fi.	32	8	1	32	х	х	24	1357	170

Note : "T it>3" = time per SCF iteration after the 3^{rd} iteration (rather constant)

Cea An example : 255 atoms of Ti

System :

- $N_{at} = 255$ atoms (Ti), 2048 bands
- Computation at Γ : nkpt = 1
- cutoff energy : 5 Ha (10 Ha for double grid)

Architecture :

- Intel Skylake (24 cores per processors) 2 processors per node cores
- Total of 256 cores used

Algo	MPI	Threads	npfft	npband	bandpp	Nbloc	T it>3 (s)	Mem (Mb)	Mem/core
LOBPCG	64	4	1	64	16	2	102	1437	359
LOBPCG	32	8	1	32	16	4	29	1176	147
LOBPCG	16	16	1	16	32	4	30	1281	80
Cheb. Fi.	256	1	4	64	х	х	31	737	737
Cheb. Fi.	32	8	1	32	х	х	24	1357	170

Note : "T it>3" = time per SCF iteration after the 3^{rd} iteration (rather constant)

- LOBPCG : better performances when using more threads
- Chebyshev Filtering gives good results too

Cea An example : 255 atoms of Ti

System :

- $N_{at} = 255$ atoms (Ti), 2048 bands
- Computation at Γ : nkpt = 1
- cutoff energy : 5 Ha (10 Ha for double grid)

Architecture :

- Intel Skylake (24 cores per processors) 2 processors per node cores
- Total of 256 cores used

Algo	MPI	Threads	npfft	npband	bandpp	Nbloc	T it>3 (s)	Mem (Mb)	Mem/core
LOBPCG	64	4	1	64	16	2	102	1437	359
LOBPCG	32	8	1	32	16	4	29	1176	147
LOBPCG	16	16	1	16	32	4	30	1281	80
Cheb. Fi.	256	1	4	64	х	х	31	737	737
Cheb. Fi.	32	8	1	32	х	х	24	1357	170

Note : "T it>3" = time per SCF iteration after the 3^{rd} iteration (rather constant)

- LOBPCG : better performances when using more threads
- Chebyshev Filtering gives good results too

More investigation is needed \Rightarrow Plan to use the "hpc tests"

1. Small benchmarking on 255 atoms of Ti

2. Impact of non-local operations : promising new conjugate-gradient implementation

Cea An other example : 144 SiO₂

System :

- N_{at} = 144 atoms (SiO₂), 460 bands
- Computation at Γ : nkpt = 1
- cutoff energy : 15 Ha (30 Ha for double grid) : $N_{PW} \approx$ 23 000
- PAW pseudo (so useylm = 1), $N_{proj} = 8$ projectors $|p_{a,nlm}\rangle$ per atom

Parameters of the ground state computation (not converged) :

- Conjugate Gradient (w foptalg = 10) : nstep = 10, nnsclo = 1, nline = 2
- sequential : 1 MPI process, 1 thread

With timopt = -1:

- <begin_timer mpi_np<="" th=""><th>procs = 1,</th><th>omp_nthre</th><th>ads =</th><th>1, mpi_rank</th><th>= world></th></begin_timer>	procs = 1,	omp_nthre	ads =	1, mpi_rank	= world>
- cpu_time =	2524.0, W	/all_time =		2524.1	
-					
- routine		сри	%	wall	%
-					
 nonlop(apply) 		1355.267	53.7	1355.319	53.7
- projbd		605.167	24.0	605.219	24.0
 vtowfk(ssdiag) 		170.550	6.8	170.556	6.8
 vtowfk(contrib) 		168.361	6.7	168.363	6.7
 fourwf%(pot) 		93.632	3.7	93.645	3.7
 nonlop(forstr) 		25.037	1.0	25.037	1.0
 fourwf%(den) 		13.132	0.5	13.135	0.5
 newkpt(excl. rwwf)	10.554	0.4	10.554	0.4

Commissariat à l'énergie atomique et aux énergies alternatives

Cea Non-local operator

 $N_{at}=144~N_{proj}=8~N_{PW}\approx 23000$

The application of the non-local operator on $|\psi
angle$ is :

$$\begin{split} H_{\rm nl} |\psi\rangle = \sum_{a}^{N_{at}} \sum_{ij}^{N_{proj}} |p_{ai}\rangle D_{aij} \, cprj_{aj} \\ cprj_{ai} = \langle p_{ai} |\psi\rangle \end{split}$$

The application of the overlap operator is computed the same way :

$$S|\psi\rangle = |\psi\rangle + \sum_{a}^{N_{at}} \sum_{ij}^{N_{proj}} |p_{ai}\rangle S_{aij} \, cprj_{aj}$$

In Abinit, the computation of $H_{nl}|\psi\rangle$ (or $S|\psi\rangle$) is done in "nonlop_ylm", in 3 steps :

- "opernla" : $cprj_{ai} = \langle p_{ai} | \psi \rangle$: $O(N_{proj}N_{at}N_{PW})$ operations
- "opernic" : $f_{ai} = \sum_j D_{aij} cprj_{aj} : O((N_{proj})^2 N_{at})$ operations
- "opernlb" : $H_{nl}|\psi\rangle = \sum_{a,i} |p_{ai}\rangle f_{ai}$: $O(N_{proj}N_{at}N_{PW})$ operations

In practice : $T_{\text{nonlop}} = T_{\text{opernla}} + T_{\text{opernlb}}$. Here : $T_{\text{nonlop}} \approx 0.5T_{\text{total}}$.

Cea Non-local operator

 $N_{at}=144~N_{proj}=8~N_{PW}\approx 23000$

The application of the non-local operator on $|\psi
angle$ is :

$$\begin{split} H_{\rm nl} |\psi\rangle = \sum_{a}^{N_{at}} \sum_{ij}^{N_{proj}} |p_{ai}\rangle D_{aij} \, cprj_{aj} \\ cprj_{ai} = \langle p_{ai} |\psi\rangle \end{split}$$

The application of the overlap operator is computed the same way :

$$S|\psi\rangle = |\psi\rangle + \sum_{a}^{N_{at}} \sum_{ij}^{N_{proj}} |p_{ai}\rangle S_{aij} \, cprj_{aj}$$

In Abinit, the computation of $H_{nl}|\psi\rangle$ (or $S|\psi\rangle$) is done in "nonlop_ylm", in 3 steps :

- "opernla": $cprj_{ai} = \langle p_{ai} | \psi \rangle$: $O(N_{proj}N_{at}N_{PW})$ operations
- "opernic" : $f_{ai} = \sum_{j} D_{aij} cprj_{aj} : O((N_{proj})^2 N_{at})$ operations
- "opernIb" : $H_{nl}|\psi\rangle = \sum_{a,i} |p_{ai}\rangle f_{ai}$: $O(N_{proj}N_{at}N_{PW})$ operations

In practice : $T_{\text{nonlop}} = T_{\text{opernla}} + T_{\text{opernlb}}$. Here : $T_{\text{nonlop}} \approx 0.5 T_{\text{total}}$.

For big systems, time spent in Fourier transformations is small ! Indeed : $T_{FFT} = O(\ln(N_{PW})N_{PW})$ and $\ln(N_{PW}) \approx 10$ so :

 $N_{proj}N_{at}N_{PW} \gg \ln(N_{PW})N_{PW}$

 $T_{\rm nonlop} \gg T_{FFT}$

Commissariat à l'énergie atomique et aux énergies alternatives

Two ways to implement Conjugate Gradient

More than > 95% of the computational time is spent in the diagonalization of the Hamiltonian. At this step : $n(\mathbf{r})$ and H are fixed and we compute new $|\psi\rangle$.

In the conjugate-gradient algorithm, one needs to compute for every band $|\psi
angle$:

- $\langle \psi | S | \psi \rangle$ and $\epsilon = \langle \psi | H | \psi \rangle$, then $| D \rangle = (H \epsilon S) | \psi \rangle$
- $\langle D|S|D \rangle$, $\langle D|H|\psi \rangle$, $\langle D|H|D \rangle$ and $\langle \psi'|S|D \rangle$, $\langle \psi'|H|\psi \rangle$, $\langle \psi'|S|\psi \rangle$

Official Abinit version :

 $cprj_{ai} = \langle p_{ai} | \psi \rangle$ coefficients (opernla) are computed on the fly and not kept in memory. \Rightarrow In PAW, need to compute $S | \psi \rangle$ in addition to $H | \psi \rangle$: 2 opernlb operations. If nline CG steps (typically 4):

nline+1 opernla and 2nline+2 opernlb per band and per SCF iteration.

Two ways to implement Conjugate Gradient

More than > 95% of the computational time is spent in the diagonalization of the Hamiltonian. At this step : $n(\mathbf{r})$ and H are fixed and we compute new $|\psi\rangle$.

In the conjugate-gradient algorithm, one needs to compute for every band $|\psi
angle$:

- $\langle \psi | S | \psi \rangle$ and $\epsilon = \langle \psi | H | \psi \rangle$, then $| D \rangle = (H \epsilon S) | \psi \rangle$
- $\langle D|S|D \rangle$, $\langle D|H|\psi \rangle$, $\langle D|H|D \rangle$ and $\langle \psi'|S|D \rangle$, $\langle \psi'|H|\psi \rangle$, $\langle \psi'|S|\psi \rangle$

Official Abinit version :

 $cprj_{ai} = \langle p_{ai} | \psi \rangle$ coefficients (opernla) are computed on the fly and not kept in memory. \Rightarrow In PAW, need to compute $S | \psi \rangle$ in addition to $H | \psi \rangle$: 2 opernlb operations. If nline CG steps (typically 4):

nline+1 opernla and 2nline+2 opernlb per band and per SCF iteration.

"cprj_in_memory" version :

 $cprj_{ai}$ coefficients (opernla) are computed at the beginning of the computation and stored. They are "propagated" when needed :

$$\begin{split} |\psi^{1}\rangle &= \alpha |\psi^{2}\rangle + \beta |\psi^{3}\rangle \\ cprj_{ai}^{1} &= \alpha \, cprj_{ai}^{2} + \beta \, cprj_{ai}^{3} \end{split}$$

 \Rightarrow One can compute $\langle \psi' | H | \psi \rangle$ or $\langle \psi' | S | \psi \rangle$ without operations.

No need of $H|\psi\rangle$ or $S|\psi\rangle$! Still one needs $(H - \epsilon S)|\psi\rangle$ so 1 opernlb is needed at every CG step

nline opernla and nline opernlb per band and per SCF iteration.

Promising result with "cprj_in_memory" version

BEGIN_TIMER mpi_nprocs = 1 cpu_time = 1552.8,	ads =	s = 1, mpi_rank = world 1552.9			
routine	сри		wall		
getcprj%opernla	318.543	20.5	318.615	20.5	
nonlop(apply)	295.517	19.0	295.533	19.0	
projbd	222.625	14.3	222.670	14.3	
getcsc%dotprod_g	176.825	11.4	176.862	11.4	
vtowfk(ssdiag)	109.697	7.1	109.703	7.1	
fourwf%(pot)	91.825	5.9	91.845	5.9	
fourwf%(G->r)	62.007	4.0	62.021	4.0	
subham(dotprod g)	61.394	4.0	61.400	4.0	
getchc%local	51.159	3.3	51.194	3.3	
nonlop%getcsc	49.992	3.2	50.001	3.2	
cgwf paw%npw work	19.343	1.2	19.356	1.2	
pawcprj(projbd)	18.933	1.2	18.940	1.2	
nonlop%getchc	13.660	0.9	13.660	0.9	

Development state of new CG routine (w foptalg = 10):

- works for real WFs, polarized or magnetic systems, and with spin-orbit coupling
- MPI parallelization on k-points (but no paral_kgb) + OpenMP (work in progress)
 However :
 - almost all tests pass, but not merged in official version yet (work in progress)
 - cannot be used for norm-conserving pseudos (not much more efficient anyway)
 - not available for Fock exchange, Berry-phase formalism, Nuclear dipole moment

- On 255-Ti : with LOBPCG better performances when increasing the number of threads
- Chebyshev Filtering gives good results too
- Need intensive testing : definition of a "standard set" to measure performances ?
- Non-local operations are the most time-consuming part of the computation for big systems
- "cprj_in_memory" implementation of CG algorithm gives promising results
- What about other algorithms : LOBPCG, Chebyshev ? And paral_kgb ?

Merci de votre attention

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Two ways to implement Conjugate Gradient II

First implementation in Abinit :

$$(H\psi)(\mathbf{G}) = K(\mathbf{G})\psi(\mathbf{G}) + \sum_{\mathbf{r}} e^{-i\mathbf{G}\mathbf{r}} V_{loc}(\mathbf{r})\psi(\mathbf{r}) + \sum_{a}^{N_{at}} \sum_{ij}^{N_{proj}} p_{ai}(\mathbf{G}) D_{aij} cpr j_{aj}$$
$$(S\psi)(\mathbf{G}) = \psi(\mathbf{G}) + \sum_{a}^{N_{at}} \sum_{ij}^{N_{proj}} p_{ai}(\mathbf{G}) S_{aij} cpr j_{aj} \qquad cpr j_{ai} = \langle p_{ai} | \psi \rangle$$

⇒ need FFTs for the local part, opernIa and opernIb for the non-local part

Then :

$$\epsilon = \sum_{\mathbf{G}} \psi^*(\mathbf{G})(H\psi)(\mathbf{G}) \qquad D(\mathbf{G}) = (H\psi)(\mathbf{G}) - \epsilon(S\psi)(\mathbf{G})$$

"cprj_in_memory" implementation :

If $\psi(\mathbf{G})$, $\psi(\mathbf{r})$ (need *FFT*) and $cprj_{ai}$ (need opernla) are in memory (same for ψ'): $\langle \psi'|H|\psi \rangle = \sum_{\mathbf{G}} (\psi'(\mathbf{G}))^* K(\mathbf{G})\psi(\mathbf{G}) + \sum_{\mathbf{r}} (\psi'(\mathbf{r}))^* V_{loc}(\mathbf{r})\psi(\mathbf{r}) + \sum_{a} \sum_{ij} (cprj'_{ai})^* D_{aij} cprj_{aj}$ $\langle \psi'|S|\psi \rangle = \sum_{\mathbf{G}} (\psi'(\mathbf{G}))^* \psi(\mathbf{G}) + \sum_{a} \sum_{ij} (cprj'_{ai})^* S_{aij} cprj_{aj}$

 \Rightarrow No FFT, no opernla, no opernlb!

 $\begin{array}{l} \left((H - \epsilon S)\psi \right)(\mathbf{G}) = \\ K(\mathbf{G})\psi(\mathbf{G}) - \epsilon\psi(\mathbf{G}) + \sum_{\mathbf{r}} e^{-i\mathbf{G}\mathbf{r}} V_{loc}(\mathbf{r})\psi(\mathbf{r}) + \sum_{a}^{N_{at}} \sum_{ij}^{N_{proj}} p_{ai}(\mathbf{G})(D_{aij} - \epsilon S_{aij})cprj_{aj} \end{array}$