
Abinit performances for systems with many atoms:
Some analyses and perspectives
L. Baguet1,2, M. Torrent1,2

1CEA, DAM, DIF, F-91297 Arpajon, France
2Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes,

91680 Bruyères-le-Châtel, France

Table of contents

1. Small benchmarking on 255 atoms of Ti

2. Impact of non-local operations : promising new conjugate-gradient
implementation

01/06/21 1/8

Table of contents

1. Small benchmarking on 255 atoms of Ti

2. Impact of non-local operations : promising new conjugate-gradient
implementation

01/06/21 1/8

Performances dependencies

Performances of Abinit depend on many factors :
• Self-Consistent Field method
• Diagonalization Alg. (CG, LOBPCG, Chebyshev filtering, RMM-DIIS)
• parallelization scheme (Number of MPI processes? Threads?)
• libraries used (for FFT and linear algebra)
• compilation options (vectorization, . . .)

In addition to all that :
• best choice depends on the system and the computer architecture
• architectures evolve with time... (new types of CPU, more GPUs soon)

The only solution to understand these effects is to measure performances

01/06/21 2/8

Performances dependencies

Performances of Abinit depend on many factors :
• Self-Consistent Field method
• Diagonalization Alg. (CG, LOBPCG, Chebyshev filtering, RMM-DIIS)
• parallelization scheme (Number of MPI processes? Threads?)
• libraries used (for FFT and linear algebra)
• compilation options (vectorization, . . .)

In addition to all that :
• best choice depends on the system and the computer architecture
• architectures evolve with time... (new types of CPU, more GPUs soon)

The only solution to understand these effects is to measure performances

01/06/21 2/8

Performances dependencies

Performances of Abinit depend on many factors :
• Self-Consistent Field method
• Diagonalization Alg. (CG, LOBPCG, Chebyshev filtering, RMM-DIIS)
• parallelization scheme (Number of MPI processes? Threads?)
• libraries used (for FFT and linear algebra)
• compilation options (vectorization, . . .)

In addition to all that :
• best choice depends on the system and the computer architecture
• architectures evolve with time... (new types of CPU, more GPUs soon)

The only solution to understand these effects is to measure performances

01/06/21 2/8

An example : 255 atoms of Ti

System :
• Nat = 255 atoms (Ti), 2048 bands
• Computation at Γ : nkpt = 1

• cutoff energy : 5 Ha (10 Ha for double grid)
Architecture :
• Intel Skylake (24 cores per processors) 2 processors per node cores
• Total of 256 cores used

Note : “T it>3” = time per SCF iteration after the 3rd iteration (rather constant)

• LOBPCG : better performances when using more threads
• Chebyshev Filtering gives good results too

More investigation is needed⇒ Plan to use the “hpc tests”

01/06/21 3/8

An example : 255 atoms of Ti

System :
• Nat = 255 atoms (Ti), 2048 bands
• Computation at Γ : nkpt = 1

• cutoff energy : 5 Ha (10 Ha for double grid)
Architecture :
• Intel Skylake (24 cores per processors) 2 processors per node cores
• Total of 256 cores used

Note : “T it>3” = time per SCF iteration after the 3rd iteration (rather constant)

• LOBPCG : better performances when using more threads
• Chebyshev Filtering gives good results too

More investigation is needed⇒ Plan to use the “hpc tests”

01/06/21 3/8

An example : 255 atoms of Ti

System :
• Nat = 255 atoms (Ti), 2048 bands
• Computation at Γ : nkpt = 1

• cutoff energy : 5 Ha (10 Ha for double grid)
Architecture :
• Intel Skylake (24 cores per processors) 2 processors per node cores
• Total of 256 cores used

Note : “T it>3” = time per SCF iteration after the 3rd iteration (rather constant)

• LOBPCG : better performances when using more threads
• Chebyshev Filtering gives good results too

More investigation is needed⇒ Plan to use the “hpc tests”

01/06/21 3/8

Table of contents

1. Small benchmarking on 255 atoms of Ti

2. Impact of non-local operations : promising new conjugate-gradient
implementation

01/06/21 3/8

An other example : 144 SiO2

System :
• Nat = 144 atoms (SiO2), 460 bands
• Computation at Γ : nkpt = 1

• cutoff energy : 15 Ha (30 Ha for double grid) : NPW ≈ 23 000
• PAW pseudo (so useylm = 1), Nproj = 8 projectors |pa,nlm〉 per atom

Parameters of the ground state computation (not converged) :
• Conjugate Gradient (wfoptalg = 10) : nstep = 10 , nnsclo = 1, nline = 2

• sequential : 1 MPI process, 1 thread

With timopt = −1 :

01/06/21 4/8

Non-local operator

Nat = 144 Nproj = 8 NPW ≈ 23000

The application of the non-local operator on |ψ〉 is :

Hnl|ψ〉 =

Nat∑
a

Nproj∑
ij

|pai〉Daij cprjaj

cprjai = 〈pai|ψ〉
The application of the overlap operator is computed the same way :

S|ψ〉 = |ψ〉+
Nat∑
a

Nproj∑
ij

|pai〉Saij cprjaj

In Abinit, the computation of Hnl|ψ〉 (or S|ψ〉) is done in “nonlop ylm”, in 3 steps :
• “opernla” : cprjai = 〈pai|ψ〉 : O(NprojNatNPW) operations
• “opernlc” : fai =

∑
j Daijcprjaj : O((Nproj)2Nat) operations

• “opernlb” : Hnl|ψ〉 =
∑

a,i |pai〉fai : O(NprojNatNPW) operations

In practice : Tnonlop = Topernla + Topernlb. Here : Tnonlop ≈ 0.5Ttotal.

For big systems, time spent in Fourier transformations is small !
Indeed : TFFT = O(ln(NPW)NPW) and ln(NPW) ≈ 10 so :

NprojNatNPW � ln(NPW)NPW

Tnonlop � TFFT

01/06/21 5/8

Non-local operator

Nat = 144 Nproj = 8 NPW ≈ 23000

The application of the non-local operator on |ψ〉 is :

Hnl|ψ〉 =

Nat∑
a

Nproj∑
ij

|pai〉Daij cprjaj

cprjai = 〈pai|ψ〉
The application of the overlap operator is computed the same way :

S|ψ〉 = |ψ〉+
Nat∑
a

Nproj∑
ij

|pai〉Saij cprjaj

In Abinit, the computation of Hnl|ψ〉 (or S|ψ〉) is done in “nonlop ylm”, in 3 steps :
• “opernla” : cprjai = 〈pai|ψ〉 : O(NprojNatNPW) operations
• “opernlc” : fai =

∑
j Daijcprjaj : O((Nproj)2Nat) operations

• “opernlb” : Hnl|ψ〉 =
∑

a,i |pai〉fai : O(NprojNatNPW) operations

In practice : Tnonlop = Topernla + Topernlb. Here : Tnonlop ≈ 0.5Ttotal.

For big systems, time spent in Fourier transformations is small !
Indeed : TFFT = O(ln(NPW)NPW) and ln(NPW) ≈ 10 so :

NprojNatNPW � ln(NPW)NPW

Tnonlop � TFFT

01/06/21 5/8

Two ways to implement Conjugate Gradient

More than > 95% of the computational time is spent in the diagonalization of the Hamiltonian.
At this step : n(r) and H are fixed and we compute new |ψ〉.
In the conjugate-gradient algorithm, one needs to compute for every band |ψ〉 :
• 〈ψ|S|ψ〉 and ε = 〈ψ|H|ψ〉, then |D〉 = (H − εS)|ψ〉
• 〈D|S|D〉 , 〈D|H|ψ〉 , 〈D|H|D〉 and 〈ψ′|S|D〉 , 〈ψ′|H|ψ〉 , 〈ψ′|S|ψ〉

Official Abinit version :
cprjai = 〈pai|ψ〉 coefficients (opernla) are computed on the fly and not kept in memory.
⇒ In PAW, need to compute S|ψ〉 in addition to H|ψ〉 : 2 opernlb operations.
If nline CG steps (typically 4) :

nline+1 opernla and 2nline+2 opernlb per band and per SCF iteration.

“cprj in memory” version :
cprjai coefficients (opernla) are computed at the beginning of the computation and stored. They
are “propagated“ when needed :

|ψ1〉 = α|ψ2〉+ β|ψ3〉

cprj
1
ai = α cprj

2
ai + β cprj

3
ai

⇒ One can compute 〈ψ′|H|ψ〉 or 〈ψ′|S|ψ〉 without opernlb operations.
No need of H|ψ〉 or S|ψ〉 ! Still one needs (H − εS)|ψ〉 so 1 opernlb is needed at every CG step

nline opernla and nline opernlb per band and per SCF iteration.

01/06/21 6/8

Two ways to implement Conjugate Gradient

More than > 95% of the computational time is spent in the diagonalization of the Hamiltonian.
At this step : n(r) and H are fixed and we compute new |ψ〉.
In the conjugate-gradient algorithm, one needs to compute for every band |ψ〉 :
• 〈ψ|S|ψ〉 and ε = 〈ψ|H|ψ〉, then |D〉 = (H − εS)|ψ〉
• 〈D|S|D〉 , 〈D|H|ψ〉 , 〈D|H|D〉 and 〈ψ′|S|D〉 , 〈ψ′|H|ψ〉 , 〈ψ′|S|ψ〉

Official Abinit version :
cprjai = 〈pai|ψ〉 coefficients (opernla) are computed on the fly and not kept in memory.
⇒ In PAW, need to compute S|ψ〉 in addition to H|ψ〉 : 2 opernlb operations.
If nline CG steps (typically 4) :

nline+1 opernla and 2nline+2 opernlb per band and per SCF iteration.

“cprj in memory” version :
cprjai coefficients (opernla) are computed at the beginning of the computation and stored. They
are “propagated“ when needed :

|ψ1〉 = α|ψ2〉+ β|ψ3〉

cprj
1
ai = α cprj

2
ai + β cprj

3
ai

⇒ One can compute 〈ψ′|H|ψ〉 or 〈ψ′|S|ψ〉 without opernlb operations.
No need of H|ψ〉 or S|ψ〉 ! Still one needs (H − εS)|ψ〉 so 1 opernlb is needed at every CG step

nline opernla and nline opernlb per band and per SCF iteration.

01/06/21 6/8

Promising result with ”cprj in memory“ version

Development state of new CG routine (wfoptalg = 10) :
• works for real WFs, polarized or magnetic systems, and with spin-orbit coupling
• MPI parallelization on k-points (but no paral kgb) + OpenMP (work in progress)

However :
• almost all tests pass, but not merged in official version yet (work in progress)
• cannot be used for norm-conserving pseudos (not much more efficient anyway)
• not available for Fock exchange, Berry-phase formalism, Nuclear dipole moment

01/06/21 7/8

Conclusion

• On 255-Ti : with LOBPCG better performances when increasing
the number of threads

• Chebyshev Filtering gives good results too
• Need intensive testing : definition of a “standard set” to measure

performances?

• Non-local operations are the most time-consuming part of the
computation for big systems

• “cprj in memory” implementation of CG algorithm gives
promising results

• What about other algorithms : LOBPCG, Chebyshev? And
paral kgb?

01/06/21 8/8

Two ways to implement Conjugate Gradient II

First implementation in Abinit :

(Hψ)(G) = K(G)ψ(G) +
∑
r

e−iGrVloc(r)ψ(r) +

Nat∑
a

Nproj∑
ij

pai(G)Daijcprjaj

(Sψ)(G) = ψ(G) +

Nat∑
a

Nproj∑
ij

pai(G)Saijcprjaj cprjai = 〈pai|ψ〉

⇒ need FFTs for the local part, opernla and opernlb for the non-local part

Then :
ε =

∑
G

ψ∗(G)(Hψ)(G) D(G) = (Hψ)(G)− ε(Sψ)(G)

“cprj in memory” implementation :

If ψ(G), ψ(r) (need FFT) and cprjai (need opernla) are in memory (same for ψ′) :

〈ψ′|H|ψ〉 =
∑

G(ψ′(G))∗K(G)ψ(G) +
∑

r(ψ′(r))∗Vloc(r)ψ(r) +
∑

a

∑
ij(cprj′ai)

∗Daijcprjaj

〈ψ′|S|ψ〉 =
∑

G(ψ′(G))∗ψ(G) +
∑

a

∑
ij(cprj′ai)

∗Saijcprjaj

⇒ No FFT, no opernla, no opernlb !

((H − εS)ψ) (G) =

K(G)ψ(G)− εψ(G) +
∑

r e
−iGrVloc(r)ψ(r) +

∑Nat
a

∑Nproj

ij pai(G)(Daij − εSaij)cprjaj

01/06/21 8/8

	Small benchmarking on 255 atoms of Ti
	Impact of non-local operations : promising new conjugate-gradient implementation

