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Extended FPMD model for high
temperature simulations in ABINIT
Implementation and applications to hot aluminum and boron
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Usual plane wave approach at high temperature

We want to compute physical quantities in extreme temperature conditions as precisely as possible.

Energy

Entropy

Pressure

Electrical conductivity

Conductivity

Absorption/Reflectivity...

Thermodynamic and ionic properties are accessible in Orbital Free.
Electronic properties, and reference state aren’t.

Ab initio QMD methods most appropriate to get these quantities with high accuracy.
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Usual plane wave approach at high temperature

Electron density in plane wave DFT software

n(r) =
∑
k

ωk

∞∑
n=0

fk,n |Ψk,n(r)|2 ,

kinetic energy expression

EK =
∑
k

ωk

∞∑
n=0

fk,n 〈k, n|∇†∇|k, n〉 ,

Kubo-Greenwood formulation of conductivity(1,2) (real part)

σ1(ν) =
2π

Ω

∞∑
n

∞∑
m

∆fmn
∆εmn

〈k, n|∇|k,m〉〈k,m|∇|k, n〉δ(∆εmn − ν).

More and more bands needed at high temperature.
(1)R Kubo. Journal of the Physical Society of Japan, 12(6):570-586, 1957.
(2)D A Greenwood. Proceedings of the Physical Society, 71(4):585, 1958.
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Usual plane wave approach at high temperature

Last Level Occupancy (LLO) around 10-5 to ensure precise results.
=⇒ More than 50,000 bands at 100 eV for 64 Al at 2.7 g/cc.
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Aluminum ρ0 64 atoms
11 valence electrons

On the left: Universal curve giving the number of double occupied orbitals per atom and
per valence electron in the HEG model vs degeneracy θ = T/TF . On the right: Number
of orbitals needed to ensure fixed LLO vs temperature for a system of 64 aluminum atoms
at standard density(3).

(3)A Blanchet, M Torrent, J Clérouin. Physics of Plasmas, 27(12):122706, 2020.
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Extended FPMD model introduction

High energy orbitals = pure PW.

Setting high PW =⇒ Involves doing a full diagonalisation
work of a big nearly empty matrix.

Continuum at high energy =⇒ Split the quantities of interest
into two contributions.

(4)S Zhang, H Wang, W Kang, P Zhang, and X T He. Physics of Plasmas, 23(4):042707, 2016.
(5)A Blanchet, J Clérouin, M Torrent, F Soubiran. Upcoming paper on Extended FPMD model, 2021.
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minum system at T = 20 eV(5).
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Extended FPMD model introduction

Restricted WF shape by imposing condition on the PW coeffi-
cients

Ck,n(G) = C0k,ne

−
(√

2εFGn −|k+G|
)2

4σ2 .

Contributions derived

NFG
e =

√
2

π2

Ω

β3/2
F 1

2
(γ, βεFGNc ),

EFGK =

√
2

π2

Ω

β5/2
F 3

2
(γ, βεFGNc ).

=⇒ Electronic density, chemical potential, entropy and stress
tensor.

No numerical unbounded integration required.
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Ext. FPMD model implementation & usage

New module, m_extfpmd at the same level as m_occ (61) and new type, extfpmd_type.
Implementation

Initialization in m_gstate before the SCF cycle, contribution
computed in m_vtorho.

Can start with input WF file.

Contributions are printed in the output for post-treatment.

Usage

One-parameter activated (use_extfpmd 1).

Reduce drastically the number of bands.

Warning is sent if model error δFG is over a predefined
threshold inviting you to raise nband.

Use small core or All-electrons PSP with SC radius.

Cutoff convergency is still needed.

m_extfpmd module header in ABINIT.
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Ext. FPMD model elementary tests

Electron density correction (for FCC Aluminum, T=20 eV)

Relative error(6) on the electron density on the plane z = 0 with only 32 bands per atom.
Uncorrected density (Legacy)

Without Ext. FPMD contributions

Ext. FPMD (Zhang et al. emulation)

With Ext. FPMD contributions

Ext. FPMD (This work)
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(6)Reference computed with 512 bands per atom (LLO < E-16).
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Ext. FPMD model elementary tests

Chemical potential
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Hugoniot equation of state curves

Using EOS codes (FPEOS, SESAME)(7).
Aluminum (Z = 13): 260 full MD, from T = 1 eV to T = 11 keV (0.1ρ0 < ρ0 < 10ρ0).

Aluminum Hugoniot using Ext. FPMD(5)
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(7)B Militzer, F Gonzalez-Cataldo, S Zhang, K P Driver, F Soubiran. Physical Review E 103:013203, 2021.
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Hugoniot equation of state curves

Boron (Z = 5): 384 full MD.

Temperatures goes from T = 300 K to T = 44 keV.

Compression goes from ρ = 0.25 g/cc (0.1ρ0) to ρ = 50 g/cc (20ρ0).

Boron Hugoniot using Ext. FPMD
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Speedup evaluation

Speedup tests on Broadwell Intel processors.
The standard KSDFT shows a T 3 dependency.
Ext. FPMD weakly depends on the temperature.
Much less bands are used in Ext. DFT. At 200 eV, KSDFT uses 2,720 bands to fullfill a LLO of
about 10-5. Corresponding Ext. FPMD uses 80 bands.

Evolution of CPU time with temperature of FCC aluminum.
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Conclusion

Efficiency of the Ext. FPMD method
- Easy to use (single variable activation).
- Lot of computing time saved.
- Estimate of error due to band cut and Warning if things goes wrong.

Advantages compared to Zhang et al. implementation
- Open source (Merged in ABINIT v9.5.2).
- No buffer to evaluate the shift factor U0.
- Warning send if error too high.
- No unbounded numerical integrals done (fast for high temperature).

Thank you for your attention!
(1)R Kubo. Journal of the Physical Society of Japan, 12(6):570-586, 1957.
(2)D A Greenwood. Proceedings of the Physical Society, 71(4):585, 1958.
(3)A Blanchet, M Torrent, J Clérouin. Physics of Plasmas, 27(12):122706, 2020.
(4)S Zhang, H Wang, W Kang, P Zhang, and X T He. Physics of Plasmas, 23(4):042707, 2016.
(5)A Blanchet, J Clérouin, M Torrent, F Soubiran. Upcoming paper on Extended FPMD model, 2021.
(7)B Militzer, F Gonzalez-Cataldo, S Zhang, K P Driver, F Soubiran. Physical Review E 103:013203, 2021.
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Appendices

Fermi Gas energy εFGn =
1

2

(
6π2n

)2/3
,

Model error δFG =
∑
k

ωk

∣∣∣∣∣ εk,Nc − εFGNc − U0

εk,Nc
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Difference between the kinetic energy εKΓ,n and eigenval-
ues εΓ,n is shown in solid line green color. The estimation
of the energy shift factor UK0 using the kinetic energy com-
puted with the lasts 1000 bands is plotted in dashed hori-
zontal green line, and the attached standard deviation σK0
is represented by the green area near theUK0 constant line.
The same quantities computed with the Fermi gas model are
plotted in blue.
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