Influence of spin-orbit coupling on the electron-phonon renormalized electronic energy levels in polar materials

Véronique Brousseau-Couture¹, Michel Côté¹, Xavier Gonze^{2,3}

Abidev 2021, June 3rd 2021

¹ Département de Physique, Université de Montréal and RQMP, Montréal, Québec, Canada ² Université Catholique de Louvain and IMCN/NAPS, Louvain-la-Neuve, Belgium ³ Skolkovo Institute of Science and Technology, Moscow, Russia

Predominance of non-adiabatic effects in polar materials

Origin of this work:

- <u>Goal</u>: **Systematic**, **larger scale** study of non-adiabatic effects on ZPR (30 materials)
- <u>Conclusions</u>:
 - * Essential for agreement with experiment
 - * Long-range Fröhlich interaction: slow response of electrons to fast LO phonons dominates ZPR

Predominance of non-adiabatic effects in polar materials

Origin of this work:

- <u>Goal</u>: **Systematic**, **larger scale** study of non-adiabatic effects on ZPR (30 materials)
- <u>Conclusions</u>:
 - * Essential for agreement with experiment
 - Long-range Fröhlich interaction: slow response of electrons to fast LO phonons dominates ZPR

How does SOC affect the Fröhlich interaction and ZPR?

Effect of SOC on electronic structure

Zinc-blende structure:

• Degeneracy lifted: $\Gamma_4 \rightarrow \Gamma_8 \bigoplus \Gamma_7$

Effect of SOC on electronic structure

Zinc-blende structure:

- Degeneracy lifted: $\Gamma_4 \rightarrow \Gamma_8 \bigoplus \Gamma_7$
- Global lowering of ε_{kn} (occupied bands)

Effect of SOC on electronic structure

Zinc-blende structure:

- Degeneracy lifted: $\Gamma_4 \rightarrow \Gamma_8 \bigoplus \Gamma_7$
- Global lowering of ε_{kn} (occupied bands)
- Modification of effective masses

Effect of SOC on electron-phonon interaction

Renormalized eigenenergies :

$$\varepsilon_{kn}(T) = \varepsilon_{kn}^{0} + \Re \varepsilon [\Sigma_{kn}^{\text{EPI}}(T, \omega)]$$

Self-energy
$$\Sigma_{(AHC)}^{\text{EPI}} = \sum_{\text{Fan}}^{\text{EPI}} + \sum_{\text{Debye-Waller}}^{\text{Debye-Waller}}$$

Non-adiabatic AHC Fan self-energy:

$$\Sigma_{kn}^{\mathsf{Fan}}(T=0) = \frac{1}{N_{q}} \sum_{qv} \sum_{n'} |\underbrace{\langle \psi_{k+qn'} | H_{qv}^{(1)} | \psi_{kn} \rangle}_{\mathsf{matrix element}}|^{2} \left[\frac{f_{k+q,n'}}{\varepsilon_{kn}^{0} - \varepsilon_{k+qn'}^{0}} + \omega_{qv} + i\delta + \frac{1 - f_{k+q,n'}}{\varepsilon_{kn}^{0} - \varepsilon_{k+qn'}^{0}} - \omega_{qv} + i\delta \right]$$

Computational framework:

DFT+DFPT, PBE-GGA, ElectronPhononCoupling python module (G. Antonius)

 $-\infty$

Including SOC : comparison to experiment

Including SOC : comparison to experiment

Including SOC : comparison to experiment

First-principles results: effect of SOC vs splitoff energy

Valence band maximum

ZPR(SOC)

(meV)

33.1

46.7

41.7

41.5

14.0

16.0

25.4

20.3

19.0

18.0

11.4

First-principles results: mode decomposition

CdS: polar + weak SOC

First-principles results: mode decomposition

CdS: polar + weak SOC

Fröhlich model

- Single electron in isotropic band
- Single Einstein phonon
- Polaron picture

$$ZPR^{Fr} = -\alpha\omega_{LO}$$
$$\alpha = \left(\frac{1}{\epsilon^{\infty}} - \frac{1}{\epsilon^{0}}\right)\sqrt{\frac{m^{*}}{2\omega_{LO}}}$$

Miglio, Brousseau-Couture et al., NPJ Computational Materials 6 167 (2020)

Assumptions: dispersionless LO phonon, parabolic electronic band around extrema

Assumptions: dispersionless LO phonon, parabolic electronic band around extrema

... now, do the radial integral in $\int d^3q$...

SOC effect on generalized Fröhlich ZPR

$$\mathsf{ZPR}_{v}^{gFr} = \sum_{j,n} \frac{1}{\sqrt{2}\Omega_{0}} \underbrace{\frac{1}{n_{d}}}_{4\pi} \int d\hat{\boldsymbol{q}} \underbrace{\left(m_{n}^{*}(\hat{\boldsymbol{q}})\right)^{1/2}}_{4\pi} (\omega_{j0}(\hat{\boldsymbol{q}}))^{-3/2} \left(\frac{\hat{\boldsymbol{q}} \cdot \boldsymbol{p}_{j}(\hat{\boldsymbol{q}})}{\epsilon^{\infty}(\hat{\boldsymbol{q}})}\right)^{2}.$$

Simplified picture for zincblende structure:

$$ZPR_{v}^{gFr} \propto average of \int_{4\pi} d\hat{\boldsymbol{q}}(m^{*})^{\frac{1}{2}}$$
 [1]

SOC effect on Fröhlich ZPR captured by the change in angular-averaged effective masses

Valence:
$$\frac{\text{ZPR}_{\nu}(\text{SOC})}{\text{ZPR}_{\nu}(\text{noSOC})} \approx \frac{\frac{1}{2} \left(\langle m_{hh}^{*}(\text{SOC})^{\frac{1}{2}} \rangle + \langle m_{lh}^{*}(\text{SOC})^{\frac{1}{2}} \rangle \right)}{\frac{1}{3} \left(2 \langle m_{hh}^{*}(\text{noSOC})^{\frac{1}{2}} \rangle + \langle m_{lh}^{*}(\text{noSOC})^{\frac{1}{2}} \rangle \right)}$$

[1] G.D. Mahan, J. Phys. Chem. Solids 26 (1965)

SOC effect within Luttinger-Kohn model

First-principles	???	Generalized Fröhlich model
EPI interaction $+$ SOC : NC pseudos only	\iff	$\langle m^* \rangle$ from DFPT + SOC : PAW only

SOC effect within Luttinger-Kohn model

First-principles	
EPI interaction + SOC : NC pseudos only	\iff

Luttinger-Kohn Hamiltonian without SOC :

$$H_{n,n'}(\mathbf{k}) = \begin{bmatrix} Ak_x^2 + B(k_y^2 + k_z^2) & Ck_x k_y & Ck_x k_z \\ Ck_x k_y & Ak_y^2 + B(k_x^2 + k_z^2) & Ck_y k_z \\ Ck_x k_y & Ck_y k_z & Ak_z^2 + B(k_x^2 + k_y^2) \end{bmatrix}$$

6 band LK model with SOC:

- Input parameters: A, B, C and Δ_{SO}
- $\{|j, m_j\rangle\}$ basis
- Solve dispersion for h.h. and l.h. bands
- $\langle m^* \rangle$ from finite differences

<u>Generalized Fröhlich model</u> $\langle m^* \rangle$ from DFPT + SOC : PAW only

> A, B, C : Luttinger parameters $(2^{nd} \text{ order } \mathbf{k} \cdot \mathbf{p})$ (optdriver 7, eph_task 6, no SOC, band extrema with $n_{deg} = 3$)

Relating gFr to first-principles: VBM

Relating gFr to first-principles: VBM

Relating gFr to first-principles: VBM

Validity of the effective mass approximation

Radial integral has analytic solution:

$$\int_{0}^{\infty} dq \frac{1}{\frac{q^2}{2m^*} + \omega_{\text{LO}}} \Rightarrow \int_{0}^{\infty} dq \frac{1}{Aq^2 + B} = \frac{1}{\sqrt{AB}} \frac{\pi}{2}$$

Effective mass approximation holds for only $\sim 10\% ({\rm l.h.})$ - $20\% ({\rm h.h})$ of BZ

Validity of the effective mass approximation

For finite upper bound:

$$\int_{0}^{q_{c}} dq \frac{1}{Aq^{2} + B} = \sqrt{\frac{1}{AB}} \operatorname{Arctan} \left(q_{c} \sqrt{\frac{A}{B}} \right)$$
$$A = (2m^{*})^{-1}, \quad B = \omega_{\text{LO}}$$

Evaluate at smallest q_c at which parabolicity is lost:

- Most materials: 60-80% of asymptotic limit (lower bound)
- Breakdown of parabolic approx. when $\omega_{LO} \sim \Delta_{\rm SO}$

Conclusion and outlook

Summary

- We study SOC effect of ZPR from first-principles for 11 benchmark semiconductors
- ZPR decrease originates from both global lowering of ε_{kn} (large q, all modes) and effective masses modification (small q, LO)
- Simplified effective mass model based on generalized Fröhlich model gives correct trends, but fails quantitatively when $\omega_{\text{LO}} \sim \Delta_{\text{SO}}$

Outlook

- Implement gFr model + SOC using finite differences from *ab initio* dispersion for $\langle m^* \rangle$
- Investigate effect of SOC on $|gkk|^2$ vs ε_{kn}^0

Conclusion and outlook

Summary

- We study SOC effect of ZPR from first-principles for 11 benchmark semiconductors
- ZPR decrease originates from both global lowering of ε_{kn} (large q, all modes) and effective masses modification (small q, LO)
- Simplified effective mass model based on generalized Fröhlich model gives correct trends, but fails quantitatively when $\omega_{\text{LO}} \sim \Delta_{\text{SO}}$

Thank you for your attention!

Fonds de recherche Nature et technologies Québec 💀 😵

