Calculating X-ray absorption spectra in ABINIT including spin-orbit effects

Nils Brouwer European XFEL GmbH

ABINIT Developer Workshop 02.06.2021

Overview

Theoretical Background

Workflow

Example Results

Overview

Workflow

Example Results

Spin-orbit coupling

Spin-Orbit coupling (SOC) is a relativistic effect that can be extracted from the Dirac equation

SOC leads to spin-orbit splitting, visible in X-ray spectra

SOC adds the following term to the Hamiltonian:

$$H_{SO} = \frac{1}{2m^2c^2} \frac{1}{r} \frac{dV(r)}{dr} \vec{L} \cdot \vec{S}$$

The operator \vec{S} couples spin-up and spin-down states

This results in 2-spinor wave functions

Spin-Orbit splitting

Dirac-relativistic core wave functions

Solution of the radial-symmetric Dirac equation:

$$\Psi_{njm_j}^{\pm} = \begin{pmatrix} \Psi_1 \\ \Psi_2 \\ \Psi_3 \\ \Psi_4 \end{pmatrix} = \begin{pmatrix} \frac{G_{nj}(r)}{r} \mathcal{Y}_{l=j\pm\frac{1}{2}}^{j,m_j} \\ -i\frac{F_{nj}(r)}{r} \mathcal{Y}_{l=j\pm\frac{1}{2}}^{j,m_j} \end{pmatrix}$$

Radial equation

$$\left(\frac{\mathrm{d}}{\mathrm{d}r} - \frac{\kappa}{r}\right) F(r) = -\alpha \left(E - V(r)\right) G(r) , \qquad \Psi_{njm_j}^+ \to \kappa = j + \frac{1}{2} ,$$
$$\left(\frac{\mathrm{d}}{\mathrm{d}r} + \frac{\kappa}{r}\right) G(r) = \left(\frac{2}{\alpha} + \alpha \left(E - V(r)\right)\right) F(r) \qquad \Psi_{njm_j}^- \to \kappa = -(j + \frac{1}{2})$$

Relativistic spherical harmonics:

$$\mathcal{Y}_{l=j\pm\frac{1}{2}}^{j,m_j} = \sqrt{\frac{l\pm m_j + \frac{1}{2}}{2l+1}} Y_l^{m_j - \frac{1}{2}} \begin{pmatrix} 1\\0 \end{pmatrix} \pm \sqrt{\frac{l\mp m_j + \frac{1}{2}}{2l+1}} Y_l^{m_j + \frac{1}{2}} \begin{pmatrix} 0\\1 \end{pmatrix}$$

European XFEL

Overview

Workflow

Example Results

7

Workflow – Step 1: Generate core wave functions

- Start from atompaw input file provided at the end of every atompaw xml file (e.g. JTH) table
- Use keyword diracrelativistic instead of semirelativistic
- Define additional states due to removed degeneracy, e. g. instead of 2p⁶ we have 2p_{1/2}² and 2p_{3/2}⁴
- Instead of n, I, occ, use n, I, kappa, occ, where kappa = -(I+1) for j=I+s and kappa = I for j=I-s
- Use keywords XMLOUT and PRTCOREWF to output a core wavefunction input file for abinit

Example: Adapt JTH input to produce core wave functions for ABINIT

Program: atompaw - input data follows:</td <td>AI 13</td>	AI 13
Al 13	XC_GGA_X_PBE+XC_GGA_C_PBE <mark>_diracrelativistic</mark> loggrid 3001
XC_GGA_X_PBE+XC_GGA_C_PBE scalarrelativistic loggrid 2001	3 3 0 0 0 0
3 3 0 0 0 0	3 1 <mark>1</mark> 1
3 1 1	3 1 <mark>-2</mark> 0
0 0 0	0 0 <mark>0</mark> 0
C	c
	c
	V
v	c
C	V
V	c c
1	v v
1.9 1.6 1.6 1.7	1
У	1.9 1.6 1.6 1.7
3.0	у
n	3.0
у	n
4.0	у
n	4.0
custom rrki	n
2.0.0	custom nrkj
1.0	2 0.0
1.9	1.9
1.9	1.9
1.9	1.9
1.9	1.9
XMLOUT	1.9
default	XMLOUT
END	PRTCOREWF
Program: atompaw - input end>	END

Workflow – Step 2 Run ABINIT

- Use core wave function file (ending in .corewf.xml) and a normal PAW potential as usual
- Activate spinors and spin-orbit coupling with nspinor=2
- Use keywords prtnabla 3 and useria 29091988 (will be changed to prtnabla 5)
- If netcdf support is present, iomode 3 is strongly recommended
- Increase nband and later check convergence with respect to your spectrum
- Get *_OUT_OPT2(.nc) file with matrix element data

Workflow – Step 3: Run CONDUCTI

- Same as without SOC:
- Choose mode 5
- Input root name of the file (will autodetect whether .nc or not)
- Input parameters for the spectrum

Nils Brouwer, ABIDEV 2021

11

Overview

Workflow

Example Results

European XFEL

Copper XANES L2/L3 edge at 300K

- Spin-orbit splitting not fitted, very close to experimental values
- Branching ratio results naturally with spin-multiplicity of spinor wave functions
- Smearing fitted to experiment with empirical formula based and Lorentzian line shapes
- Different shape of L2/L3-edge (partially due to different smearing)

Simulation Cu XANES L2/L3 edge at 300K lattice temperature. Exp. Data from N. Jourdain et al., PRB 2015

XANES in Gold

XANES of gold at room temperature. L2/L3-edge superimposed. Exp. data taken from Nishimura et al. (J. phys. Chem C 116 (2012) 4511.)

XANES of Gold L2/L3-edge at room

temperature.

- Same smearing for both edges.
- Clear difference in edge shape, like in the experiment.
- Can be scaled up to WDM conditions (slightly more challenging than copper).

Acknowledgements

- Vanina Recoules
- Marc Torrent
- Nathalie Holzwarth
- Recently published: Computer Physics Communications 266, 108029 (2021)

Thank you for your attention!