

N-body wavefunction contains too much information

 $\Psi(\mathbf{r}_1,\mathbf{r}_2,\cdots,\mathbf{r}_N)$

N-body wavefunction contains too much information

$$\Psi({f r}_1,{f r}_2,\cdots,{f r}_N)$$

 \rightarrow DFT works with the density:

$$\rho(\mathbf{r}) = N \int d\mathbf{r}_2 \cdots d\mathbf{r}_N \Psi^*(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N) \Psi(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N)$$

N-body wavefunction contains too much information

$$\Psi({f r}_1,{f r}_2,\cdots,{f r}_N)$$

 \rightarrow DFT works with the density:

$$\rho(\mathbf{r}) = N \int d\mathbf{r}_2 \cdots d\mathbf{r}_N \Psi^*(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N) \Psi(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N)$$

1-body quantity sufficient to calculate many observables including

$$E_H = \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \rho(\mathbf{r}) \frac{1}{|\mathbf{r} - \mathbf{r}'|} \rho(\mathbf{r}')$$

but not the kinetic energy

 $T \neq T[\rho]$

 \rightarrow Kohn-Sham approach etc...

N-body wavefunction contains too much information

$$\Psi({f r}_1,{f r}_2,\cdots,{f r}_N)$$

 \rightarrow DFT works with the density:

$$\rho(\mathbf{r}) = N \int d\mathbf{r}_2 \cdots d\mathbf{r}_N \Psi^*(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N) \Psi(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N)$$

 \rightarrow 1-body reduced density-matrix:

$$\gamma(\mathbf{r},\mathbf{r}') = N \int d\mathbf{r}_2 \cdots d\mathbf{r}_N \Psi^*(\mathbf{r},\mathbf{r}_2,\cdots,\mathbf{r}_N) \Psi(\mathbf{r}',\mathbf{r}_2,\cdots,\mathbf{r}_N)$$

can access the kinetic energy:

$$T[\gamma] = -\frac{\hbar^2}{2m} \int d\mathbf{r} \lim_{\mathbf{r'} \to \mathbf{r}} \nabla^2_{\mathbf{r'}} \gamma(\mathbf{r}, \mathbf{r'})$$

1-body reduced density matrix with non-interacting electrons

With non-interacting electrons (i.e. Kohn-Sham), one can easily calculate

 \rightarrow the density:

$$\rho(\mathbf{r}) = \sum_{i} f_{i} \varphi_{i}^{*}(\mathbf{r}) \varphi_{i}(\mathbf{r})$$

 \rightarrow the density-matrix:

$$\gamma(\mathbf{r}, \mathbf{r}') = \sum_{i} f_{i} \varphi_{i}^{*}(\mathbf{r}) \varphi_{i}(\mathbf{r}')$$

where the occupation numbers f_i are 0 or 2.

GW is known for the band gaps

Diagrammatic approach:

Band gaps of **solids**

GW can get you the full Green's function

The Green's function contains the density-matrix:

$$\gamma(\mathbf{r}, \mathbf{r'}) = -iG(\mathbf{r}, \mathbf{r'}, t - t' = 0^{-})$$

in imaginary frequency domain:

$$\gamma(\mathbf{r},\mathbf{r'}) = -\frac{1}{2\pi} \int d\omega \, G(\mathbf{r},\mathbf{r'},\mu+i\omega)$$

The usual **one-shot procedure**:

 Self-consistent Kohn-Sham for many many states
nband 200

 $arphi_{\mathbf{k}i}(\mathbf{r})$ $\epsilon_{\mathbf{k}i}$

The usual **one-shot procedure**:

 Self-consistent Kohn-Sham for many many states nband 200

2. Screening calculation on imaginary frequencies gwcalctyp 21

 $arphi_{\mathbf{k}i}(\mathbf{r})$ $\epsilon_{\mathbf{k}i}$

The usual one-shot procedure:

 Self-consistent Kohn-Sham for many many states
nband 200

2. Screening calculation on imaginary frequencies gwcalctyp 21

 GW calculation for the full self-energy on imaginary frequencies gwcalctyp 21

 $\varphi_{\mathbf{k}i}(\mathbf{r})$ $\epsilon_{\mathbf{k}i}$

The usual **one-shot procedure**:

1. Self-consistent Kohn-Shamfor many many statesnband200

3. *GW* calculation for the full self-energy

2. Screening calculation on imaginary frequencies gwcalctyp 21

on imaginary frequencies

 $arphi_{\mathbf{k}i}(\mathbf{r})$ $\epsilon_{\mathbf{k}i}$

 $\begin{array}{c} \mathbf{WFK} & W(i\omega) \\ \mathbf{SCR} \\ \mathbf{WFK} & \langle \mathbf{k}i | \Sigma^{GW}(\mu+i\omega) | \mathbf{k}j \rangle \end{array}$

gwcalctyp 21

$$\langle \mathbf{k}i|\gamma^{GW}|\mathbf{k}j\rangle = -\frac{1}{2\pi}\int d\omega \frac{\langle \mathbf{k}i|\Sigma^{GW}(\mu + i\omega)|\mathbf{k}j\rangle}{(\mu + i\omega - \epsilon_{\mathbf{k}i})(\mu + i\omega - \epsilon_{\mathbf{k}j})}$$

 gw1rdm
 1 or 2
 $\langle \mathbf{k}i|\gamma^{GW}|\mathbf{k}j\rangle = -\frac{1}{2\pi}\int d\omega \frac{\langle \mathbf{k}i|\Sigma^{GW}(\mu + i\omega)|\mathbf{k}j\rangle}{(\mu + i\omega - \epsilon_{\mathbf{k}j})(\mu + i\omega - \epsilon_{\mathbf{k}j})}$

 WFK_DEN
 VFK_DEN

F. Bruneval, gw1rdm

ABIDEV 2021

Fun facts about the density-matrix

 $\langle \mathbf{k}i|\gamma|\mathbf{k}j\rangle$

Fun facts about the density-matrix

Diago

Natural orbitals

 $\phi_{\mathbf{k}i}(\mathbf{r})$

Natural occupations $0 < f_{\mathbf{k}i} < 2$

 $\sum w_{\mathbf{k}} f_{\mathbf{k}i} = N$ $\mathbf{k}i$

Silicon GW@PBE0

 $\langle \mathbf{k}i|\gamma|\mathbf{k}j\rangle$

Occs. after	updating	with S_c	correct. at	k-point:	0.50000	0.00000	0.00000		
1.93854	1.92153	1.86156	1.86155	0.07995	0.05992	0.05991	0.02140	0.02140	0.02123
0.02101	0.01904	0.01904	0.01191	0.00607	0.00529	0.00500	0.00500	0.00487	0.00487
0.00370	0.00331	0.00331	0.00312	0.00312	0.00225	0.00140	0.00140	0.00125	0.00122
0.00122	0.00105	0.00101	0.00101	0.00099	0.00097	0.00093	0.00093	0.00084	0.00083
0.00070	0.00070	0.00060	0.00060	0.00056	0.00039	0.00032	0.00032	0.00027	0.00027
0.00024	0.00024	0.00024	0.00024	0.00024	0.00024	0.00022	0.00020	0.00020	0.00020
0.00020	0.00020	0.00020	0.00018	0.00018	0.00016	0.00014	0.00013	0.00013	0.00012
0.00010	0.00010	0.00009	0.00009	0.00008	0.00007	0.00007	0.00007	0.00006	0.00006
0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00004	0.00004
0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003	0.00003	0.00003	0.00003
0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00001	0.00001	0.00001
0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00000

Total occ. from band **1** to **120** at current k-point:

7.99342

 $\rightarrow\,$ All the occupations are between 0 and 2

Fun facts about the density-matrix

Diago

 $\langle \mathbf{k}i|\gamma|\mathbf{k}j\rangle$

Natural orbitals

 $\phi_{\mathbf{k}i}(\mathbf{r})$ Natural occupations $0 < f_{\mathbf{k}i} < 2$

 $\sum w_{\mathbf{k}} f_{\mathbf{k}i} = N$

Silicon GW@PBE0

Total occ.	from band	1 to	120 at current	k-point:	7.99561
Total occ.	from band	1 to	120 at current	k-point:	7.99688
Total occ.	from band	1 to	120 at current	k-point:	8.00560
Total occ.	from band	1 to	120 at current	k-point:	8.00442
Total occ.	from band	1 to	120 at current	k-point:	7.98525
Total occ.	from band	1 to	120 at current	k-point:	7.99342

Total averaged occ. from all k-points: 7.99922

 \rightarrow The number of electrons is conserved within 10⁻³

 \rightarrow Correlation induces weight transfer in between k-points

Silicon density

center of Si-Si bond

QMC: Chen et al. PRB (2021)

Silicon density

center of Si-Si bond

QMC: Chen et al. PRB (2021)

New GW total energy definition

$$T_s[\varphi^{\mathrm{KS}}] = 3.104 \mathrm{~Ha}$$

 $T[\gamma^{GW}] = 3.385 \mathrm{~Ha}$ \rightarrow This one already includes the "correlation part" of the kinetic energy

We propose a new total energy formula:

$$E_{tot}^{GW} = E_{\rm HF}[\gamma^{GW}] + E_c^{GW} ~~ {\rm no}~ {\rm adiabatic~ connection}$$

to be compared with RPA formula:

$$E_{tot}^{\rm RPA} = E_{\rm HF}[\varphi^{\rm KS}] + E_c^{\rm RPA}$$

adiabatic connection

Silicon GW total energy

Silicon GW total energy

Silicon lattice constant

PBE input

Silicon lattice constant

PBE input

PBE0 75% input

HF lattice constant nightmare

HF lattice constant nightmare

Summary

Implementation of the GW 1body reduced density-matrix gw1rdm

New evaluation of

- \rightarrow electronic density
- \rightarrow natural orbitals, natural occupations (diagonalization) differ from 0 or 2, but sum up to the correct N
- \rightarrow total energy parts (kinetic energy including correlation)
- \rightarrow Estimate of the self-consistent GW total energy for solids
- → Estimate of scGW lattice constants ≠ RPA@PBE
 - \rightarrow then, can scGW capture van der Waals?

ONI Y

NC

Supplemental information

KLI NC pseudo potential as a workaround?

Diamond PBE0 PAW

The linearized GW density matrix

3-step approximation: "linearized one-shot GW" approximation

