Generalization of the cRPA scheme : implementation and use. Role of interactions on oxides p orbitals.

R. Outerovitch, B. Amadon

CEA, DAM, DIF, F-91297 Arpajon, France

AbiDev 2021 31.05.2021

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Cea 1.1 Limit of DFT

AbiDev 2021

Developed by Anisimov et al.

Vladimir I. Anisimov, Jan Zaanen, and Ole K. Andersen. In: *Phys. Rev. B* 44 (1991) A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen. In: *Phys. Rev. B* 52 (1995)

- Strongly correlated electrons are located on specific orbitals (eg. d or f)
- Explicit interaction limited to those orbitals
- Static (DFT+U) or dynamical (DFT+DMFT) mean field
- Strength of interactions are calculated using U and J

For more on UO_2 see :

S. L. Dudarev et al. In: *physica status solidi* (a) 166.1 (1998) Boris Dorado et al. In: *Phys. Rev. B* 79 (2009) Jindřich Kolorenč, Alexander B. Shick, and Alexander I. Lichtenstein. In: *Phys. Rev. B* 92 (2015)

Density of state of UO_2 is corrected using GGA+U with U=5eV

R. Outerovitch

AbiDev 2021

Experimentally fitted

- Limited to known systems
- Not truly first principle

Calculated

constrained LDA

V. I. Anisimov and O. Gunnarsson. In: *Phys. Rev. B* 43 (1991) Matteo Cococcioni and Stefano de Gironcoli. In: *Phys. Rev. B* 71 (2005)

constrained Random Phase Approximation (cRPA)

F. Aryasetiawan et al. In: Phys. Rev. B 70 (2004)

Developed by Aryasetiawan et al.

- Screened interaction of correlated electrons
- Electron-hole transition representation
- Separation of χ_0 in two terms
- $\chi_0^{\rm correl}$ screening due to correlated electrons
- *χ*^r₀ screening due to the rest of the system

Developed by Aryasetiawan et al.

- Screened interaction of correlated electrons
- Electron-hole transition representation
- Separation of χ_0 in two terms
- $\chi_0^{\rm correl}$ screening due to correlated electrons
- *χ*^r₀ screening due to the rest of the system

The effective interaction W is calculated using χ_0^r

- Need of a local basis to project W because U is a local quantity
- We use the Projected Localized Orbital Wannier functions of ABINIT

$$[U]_{m_1,m_2,m_1,m_2} = \langle w_{m_1}^{\mathbf{R}_1 l_1} w_{m_2}^{\mathbf{R}_1 l_1} | W^r(\mathbf{r},\mathbf{r}',\omega) | w_{m_1}^{\mathbf{R}_1 l_1} w_{m_2}^{\mathbf{R}_1 l_1} \rangle$$

New implementation :

- Enabling any number of effective interaction per system (e.g. U_{ff}, U_{pp} and U_{fp} in UO₂)
- Using a separate module for PLO-Wannier
- New data-type for the interaction matrix

Cea 1.7 New definition of screening

Wannier functions are selected by the plowan keywords, enabling more than one orbital.

The projection of W^r becomes :

$$\begin{split} & [U]_{m_1,m_2,m_1,m_2}^{\mathbf{R}_1,l_1,\mathbf{R}_2,l_2} = \langle w_{m_1}^{\mathbf{R}_1l_1} w_{m_2}^{\mathbf{R}_2l_2} | W^r(\mathbf{r},\mathbf{r}',\omega) | w_{m_1}^{\mathbf{R}_1l_1} w_{m_2}^{\mathbf{R}_2l_2} \rangle \\ & \text{and } U \text{ is :} \end{split}$$

$$U = \frac{1}{(2l_1+1)(2l_2+1)} \sum_{m_1=-l_1}^{l_1} \sum_{m_2=-l_2}^{l_2} U_{m_1,m_2,m_1,m_2}$$

In the old implementation :

• $\mathbf{R}_1 = \mathbf{R}_2$ and $l_1 = l_2$ so $m = (-l, +l) \Rightarrow$ (-3,3) for U_{ff}

In the new implementation :

• $\mathbf{R}_1 \neq \mathbf{R}_2$ and as l depend on $\mathbf{R} \Rightarrow l_1 \neq l_2$

The dimension of [U] depend on the values of $l \Rightarrow$ need of nested data-types

The heavy uses of data-types dramatically slow the optimized compilation on Intel compilers

No optimization by default, HAVE_CRPA_OPTIM pre-processor macro to activate

2.1 Results of U_{pp}

Example of UO_2 :

Old implementation

	f	d	p	p'
f	8.56			
d		4.97		
p			9.27	
p'				9.27

New implementation

		f	d	p	p'
	f	8.56	5.73	2.93	2.93
\Rightarrow	d	5.73	4.97	2.90	2.90
	p	2.93	2.90	9.27	2.32
	p'	2.93	2.90	2.32	9.27

2.1 Results of U_{pp}

Example of UO_2 :

Old implementation

	f	d	p	p'
f	8.56			
d		4.97		
p			9.27	
p'				9.27

New implementation

		f	d	p	p'
	f	8.56	5.73	2.93	2.93
\Rightarrow	d	5.73	4.97	2.90	2.90
	p	2.93	2.90	9.27	2.32
	p'	2.93	2.90	2.32	9.27

2.2 Results of U_{pp}

Comparison to previous results

	UO_2		
Method	ff	pp	fp
Experimental ¹	4.5		
cRPA <i>fp</i> -model ²	6.5	6.0	1.9
cRPA fp -model (our work ³)	6.7	5.1	2.3
cRPA f -model (our work ³)	5.0		

¹Akio Kotani and Takao Yamazaki. In: *Progress of Theoretical Physics Supplement* 108 (1992)
 ²Priyanka Seth et al. In: *Phys. Rev. Lett.* 119 (2017)
 ³Jean-Baptiste Morée, Robinson Outerovitch, and Bernard Amadon. In: *Phys. Rev. B* 103 (2021)

- New implementation of cRPA
 - Available since ABINIT v9
 - Increased modularity
- Using generalized cRPA with correlated p orbital
 - Improve description of some system with p orbitals

Perspectives

- Assess the impact of U_{pp} on cRPA
- Full-consistent DFT+U_{ff}+U_{pp}/cRPA
- Implementation of DFT+U with Wannier functions

Any questions ?

Robinson Outerovitch, PhD student at CEA-DAM robinson.outerovitch@cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Cea References I

- V. I. Anisimov and O. Gunnarsson. "Density-functional calculation of effective Coulomb interactions in metals". In: *Phys. Rev. B* 43 (10 Apr. 1991), pp. 7570–7574.
- Vladimir I. Anisimov, Jan Zaanen, and Ole K. Andersen. "Band theory and Mott insulators: Hubbard *U* instead of Stoner *I*". In: *Phys. Rev. B* 44 (3 July 1991), pp. 943–954.
- F. Aryasetiawan et al. "Frequency-dependent local interactions and low-energy effective models from electronic structure calculations". In: *Phys. Rev. B* 70 (19 Nov. 2004), p. 195104.
- Y. Baer and J. Schoenes. "Electronic structure and Coulomb correlation energy in UO2 single crystal". In: *Solid State Communications* 33.8 (Feb. 1980), pp. 885–888.
- Matteo Cococcioni and Stefano de Gironcoli. "Linear response approach to the calculation of the effective interaction parameters in the LDA + *U* method". In: *Phys. Rev. B* 71 (3 Jan. 2005), p. 035105.

References II

- Boris Dorado et al. "DFT + U calculations of the ground state and metastable states of uranium dioxide". In: *Phys. Rev. B* 79 (23 June 2009), p. 235125.
- S. L. Dudarev et al. "Electronic Structure and Elastic Properties of Strongly Correlated Metal Oxides from First Principles: LSDA + U, SIC-LSDA and EELS Study of UO2 and NiO". In: *physica status solidi (a)* 166.1 (1998), pp. 429–443.
- Ersoy Şaşıoğlu, Christoph Friedrich, and Stefan Blügel. "Effective Coulomb interaction in transition metals from constrained random-phase approximation". In: *Phys. Rev. B* 83 (12 Mar. 2011), p. 121101.
- Jindřich Kolorenč, Alexander B. Shick, and Alexander I. Lichtenstein. "Electronic structure and core-level spectra of light actinide dioxides in the dynamical mean-field theory". In: *Phys. Rev. B* 92 (8 Aug. 2015), p. 085125.
- Akio Kotani and Takao Yamazaki. "Systematic Analysis of Core Photoemission Spectra for Actinide Di-Oxides and Rare-Earth Sesqui-Oxides". In: *Progress of Theoretical Physics Supplement* 108 (Feb. 1992), pp. 117–131. ISSN: 0375-9687.

- A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen. "Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators". In: *Phys. Rev. B* 52 (8 1995), R5467–R5470.
- Jean-Baptiste Morée, Robinson Outerovitch, and Bernard Amadon. "First-principles calculation of the Coulomb interaction parameters *U* and *J* for actinide dioxides". In: *Phys. Rev. B* 103 (4 Jan. 2021), p. 045113.
- Priyanka Seth et al. "Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions". In: *Phys. Rev. Lett.* 119 (5 Aug. 2017), p. 056401.

Expression of ϵ

- $\epsilon = 1 v\chi_0$
- with $\chi_0 = \chi_0^r + \chi_0^{\text{correl}}$ • $\epsilon^{-1} = \frac{1}{1 - v(\chi_0^r + \chi_0^{\text{correl}})}$

Decomposition of ϵ^{-1}

•
$$\epsilon_r^{-1} = \frac{1}{1 - v\chi_0^r}$$

• $\epsilon_{\text{correl}}^{-1} = \frac{1}{1 - W_r \chi_0^{\text{correl}}}$

with $W_r = \frac{v}{1 - v\chi_0^r} = v\epsilon_r^{-1}$

•
$$|\widetilde{\chi}_m^{\mathbf{k}}\rangle = \sum_{\nu \in W} \langle \Psi_\nu^{\mathbf{k}} | \chi_m^{\mathbf{k}} \rangle | \Psi_\nu^{\mathbf{k}} \rangle$$

• Renormalization using overlap matrix

•
$$|w_m^{\mathbf{k}}\rangle = \sum_{\nu} C_{m\nu}^{\mathbf{k}} |\Psi_{\nu}^{\mathbf{k}}\rangle$$

A weight w is applied to each transition from ν to ν'

Case nº1 (a) : separate bands

If ν and ν' are correlated bands : $w = 0 \Rightarrow$ transition suppressed

Otherwise : $w = 1 \Rightarrow$ transition kept

Case n°2 (b) : intricate bands ⁴

The weight is a function of Wannier coefficients $C^{\mathbf{k}}_{m\nu}$

If coefficients are important, then bands are very correlated, $w\approx 0$

If coefficients are low, then bands are not correlated, $w \approx 1$

⁴Ersoy Şaşıoğlu, Christoph Friedrich, and Stefan Blügel. In: *Phys. Rev. B* 83 (2011)