

Constrained DFT to mimick thermalized photo-excited carriers

Charles Paillard Laboratoire SPMS, CentraleSupélec/CNRS, Université Paris-Saclay, France

June 1, 2021

2 Implementation

Photostriction in ferroelectrics

- Ferroelectric = functional material with switchable electrical polarization
- Photostriction= change of shape under illumination.
- BFO: longitudinal distortion of pprox 1.5 imes 10⁻³ % ¹.

Modelling light-matter interaction

- Most light-matter *ab-initio* methods focus on describing optical absorption spectra.
 - Independent Particle Approximation (IPA)
 - Random Phase Approximation (RPA)
 - Time-Dependent Density Functional Theory (TD-DFT)
 - Bethe-Salpether Equation (BSE)

• But difficult to relax structure!

- Absorption of photon $\hbar \omega > E_g$ and electron-hole pair creation.
- "Isotropification" of momenta through e – e elastic scattering.
- "Thermalization" (relaxation to band edges) through *e*phonon inelastic scattering.
- Recombination (radiative or non-radiative), *i.e.* destruction of e – h pairs.

- Absorption of photon $\hbar \omega > E_g$ and electron-hole pair creation.
- "Isotropification" of momenta through e – e elastic scattering.
- "Thermalization" (relaxation to band edges) through *e*phonon inelastic scattering.
- Recombination (radiative or non-radiative), *i.e.* destruction of e – h pairs.

- Absorption of photon $\hbar \omega > E_g$ and electron-hole pair creation.
- "Isotropification" of momenta through e – e elastic scattering.
- "Thermalization" (relaxation to band edges) through *e*phonon inelastic scattering.
- Recombination (radiative or non-radiative), *i.e.* destruction of e – h pairs.

- Absorption of photon $\hbar \omega > E_g$ and electron-hole pair creation.
- "Isotropification" of momenta through e – e elastic scattering.
- "Thermalization" (relaxation to band edges) through *e*phonon inelastic scattering.
- Recombination (radiative or non-radiative), *i.e.* destruction of e – h pairs.

- Absorption of photon $\hbar \omega > E_g$ and electron-hole pair creation.
- "Isotropification" of momenta through e – e elastic scattering.
- "Thermalization" (relaxation to band edges) through *e*phonon inelastic scattering.
- Recombination (radiative or non-radiative), *i.e.* destruction of e – h pairs.

- Absorption of photon $\hbar \omega > E_g$ and electron-hole pair creation.
- "Isotropification" of momenta through e – e elastic scattering.
- "Thermalization" (relaxation to band edges) through *e*phonon inelastic scattering.
- Recombination (radiative or non-radiative), *i.e.* destruction of e – h pairs.

- Absorption of photon $\hbar \omega > E_g$ and electron-hole pair creation.
- "Isotropification" of momenta through e – e elastic scattering.
- "Thermalization" (relaxation to band edges) through *e*phonon inelastic scattering.
- Recombination (radiative or non-radiative), *i.e.* destruction of e – h pairs.

- Absorption of photon $\hbar \omega > E_g$ and electron-hole pair creation.
- "Isotropification" of momenta through e – e elastic scattering.
- "Thermalization" (relaxation to band edges) through *e*phonon inelastic scattering.
- Recombination (radiative or non-radiative), *i.e.* destruction of e – h pairs.

- Absorption of photon $\hbar \omega > E_g$ and electron-hole pair creation.
- "Isotropification" of momenta through e – e elastic scattering.
- "Thermalization" (relaxation to band edges) through *e*phonon inelastic scattering.
- Recombination (radiative or non-radiative), *i.e.* destruction of e – h pairs.

The \triangle SCF method

- One possibility to relax structure while "mimicking" photoexcitation: ΔSCF method.
- Basically, fix occupation number by hand. Already doable in abinit using occopt 2 and occ.

C. Paillard et al., Phys. Rev. Lett. 116, 247401 (2016). 🗇 🚛 🚛 🕫 🖉 🖉

The ΔSCF method

- One possibility to relax structure while "mimicking" photoexcitation: ΔSCF method.
- Basically, fix occupation number by hand. Already doable in abinit using occopt 2 and occ.

B. Zhang et al., Phys. Rev. B 100, 144201 (2019).

The \triangle SCF method

- One possibility to relax structure while "mimicking" photoexcitation: ΔSCF method.
- Basically, fix occupation number by hand. Already doable in abinit using occopt 2 and occ.

The \triangle SCF method

SCF cycle

 Δ SCF cycle

1 Introduction

Photo-induced phase transitions

Implementation

KS-DFT SCF cycle

- Initialize potential from density
- Oiagonalize Hamiltonian and find Kohn-Sham orbitals and energies $\varepsilon_{nk\sigma}$.
- **③** Determine occupancy of orbitals: find μ such

$$\sum_{n,\boldsymbol{k},\sigma} w_{\boldsymbol{k}} f(\varepsilon_{n\boldsymbol{k}\sigma},\mu,T_{smear}) = n_{elec}$$

using bi-section algorithm.

Deduce the electronic density. Go back to 1) if not converged.

Implementation

KS-DFT SCF cycle

- Initialize potential from density
- Oiagonalize Hamiltonian and find Kohn-Sham orbitals and energies $\varepsilon_{nk\sigma}$.
- **(3)** Determine occupancy of orbitals: find μ such

$$\sum_{n,\boldsymbol{k},\sigma} w_{\boldsymbol{k}} f(\varepsilon_{n\boldsymbol{k}\sigma},\mu,T_{smear}) = n_{elec}$$

using bissection algorithm.

Deduce the electronic density. Go back to 1) if not converged.

Implementation

- KS "c"-DFT SCF cycle
 - Initialize potential from density
 - Oiagonalize Hamiltonian and find Kohn-Sham orbitals and energies $\varepsilon_{nk\sigma}$.
 - **(a)** Determine occupancy of orbitals: find μ_e, μ_h such

$$\sum_{\text{conduction } \mathbf{k}, \sigma} w_{\mathbf{k}} f(\varepsilon_{n\mathbf{k}\sigma}, \mu_{e}, T_{\text{smear}}) = n_{ph}$$

 $n \in \text{conduction}, \boldsymbol{k}, \sigma$

AND

$$\sum_{n \in \text{valence}, \boldsymbol{k}, \sigma} w_{\boldsymbol{k}} f(\varepsilon_{n \boldsymbol{k} \sigma}, \mu_{h}, T_{smear}) = n_{elec} - n_{ph}$$

using bissection algorithm.

Deduce the electronic density. Go back to 1) if not converged.

 μ_e and $\mu_h \equiv$ quasi-equilibrium Fermi-Dirac chemical potentials for electrons in CB (holes in VB).

Fermi-Dirac DFT

occopt 3 tsmear 0.004

Constrained DFT

occopt 9 ival 88 nqFD 0.10 tsmear 0.004 2.1]{/images/SCF-000.pdf}

< 日 > < 同 > < 回 > < 回 > < 回 >

Fermi-Dirac DFT

occopt13^{cale=2.1}K/images/<u>SCF</u>-000.pdf} tsmear 0.004

Constrained DFT

< 日 > < 同 > < 回 > < 回 > < 回 >

Fermi-Dirac DFT

occopt 3 tsmear 0.004

Constrained DFT

Fermi-Dirac DFT

occopt 3
ccopt 3

Constrained DFT

.≣. ►

Fermi energy for thermalized electrons							
and	holes	(hart	ree)	= 0	.2852	5,	0.17012
Aver	age V	xc (ha	artree	e)= -	0.347	26	μ _e , μ _h
occ	2.000000	2.000000	1.709670	1.286049	0.031578	0.000000	
	0.000000	0.000000		irvient pas a	se calmer. E		
	2.000000	2.000000	1.999997	1.984930	0.009216	0.000000	
	0.000000	0.000000		AND THE REAL PROPERTY.			
	2.000000	2.000000	2.000000	1.999995	1.993200	0.000002	
	0.000000	0.000000		es/anatomic	contrated and		
	2.000000	2.000000	2.000000	1.999835	0.000003	0.000000	
	0.000000	0.000000			Construction of the local division of the		
	2.000000	2.000000	1.999998	0.013526	0.000012	0.000000	
	0.000000	0.000000					
	2.000000	2.000000	2.000000	1.999740	0.635282	0.000000	
	0.000000	8.000000					
	2.000000	2.000000	2.000000	2.000000	1.999974	0.207407	
	0.000000	0.000000					
100	2.000000	2.000000	2.000000	2.000000	0.001207	0.000000	
- 11 <i>2</i>	0.000000	0.000000					
	2.000000	1.983120	0.000027	0.000027	0.000247	0.000001	
	0.000001	0.000000					
	2.000000	2.000000	0.518049	0.518049	1.362480	0.000000	
	0.000000	0.000000					
							
	VB						

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

æ

What it can and can't do?

Main modifications: 61_occeig/m_occ.F90

- getnel
 - Added fermih, ibandmin, ibandmax to the list of arguments
 - When occopt=9, computes the number of electron for bands located between ibandmin and ibandmax.
- newocc
 - added fermih, ivalence, ne_qFD and nh_qFD
 - occopt=9: determines fermie and fermih of electrons and holes with the constraints of having nelec nh_qFD for bands 1 up to ivalence and ne_qFD for bands \geq ivalence + 1

1 Introduction

2 Implementation

Photo-induced phase transitions

Ferroelectric instabilities in perovskite oxides

- Phonon in PbTiO₃ cubic phase using PHONOPY
 - 2 × 2 × 2 perovskite supercell (40 atoms)
 - $8 \times 8 \times 8$ Γ -centered *k*-mesh.
 - PAW; 35 Ha plane wave cutoff.
- Increasing $n_{ph} \Rightarrow$
 - Γ (polar) instabilty "less" unstable.
 - *M*-, *R*-instabilities (tilts) becomes dominant instability.

C. Paillard et al., Phys. Rev. Lett. 123, 087601 (2019). B C. Paillard Laboratoire SPMS, CentraleSupélec/CNRS, Uni 18/23

- Phonon in PbTiO₃ cubic phase using PHONOPY
 - 2 × 2 × 2 perovskite supercell (40 atoms)
 - $8 \times 8 \times 8$ Γ -centered *k*-mesh.
 - PAW; 35 Ha plane wave cutoff.
- Increasing $n_{ph} \Rightarrow$
 - Γ (polar) instabilty "less" unstable.
 - *M*-, *R*-instabilities (tilts) becomes dominant instability.

- Phonon in PbTiO₃ cubic phase using PHONOPY
 - 2 × 2 × 2 perovskite supercell (40 atoms)
 - $8 \times 8 \times 8$ Γ -centered *k*-mesh.
 - PAW; 35 Ha plane wave cutoff.
- Increasing $n_{ph} \Rightarrow$
 - Γ (polar) instability "less" unstable.
 - *M*-, *R*-instabilities (tilts) becomes dominant instability.

C. Paillard *et al.*, *Phys. Rev. Lett.* **123**, 087601 (2019).

- Phonon in PbTiO₃ cubic phase using PHONOPY
 - 2 × 2 × 2 perovskite supercell (40 atoms)
 - $8 \times 8 \times 8$ Γ -centered *k*-mesh.
 - PAW; 35 Ha plane wave cutoff.
- Increasing $n_{ph} \Rightarrow$
 - Γ (polar) instability "less" unstable.
 - *M*-, *R*-instabilities (tilts) becomes dominant instability.

C. Paillard et al., Phys. Rev. Lett. 123, 087601 (2019). (2019

Photo-induced phase transition

- PTO: phase transition from ferroelectric to antiferrodistortive and antipolar.
- BTO: phase transition from rombohedral ferroelectric to cubic paraelectric.

Photo-induced phase transition

- PTO: phase transition from ferroelectric to antiferrodistortive and antipolar.
- BTO: phase transition from rombohedral ferroelectric to cubic paraelectric.

C. Paillard et al., Phys. Rev. Lett. 123, 087601 (2019). B A REV REV REV Charles Paillard Laboratoire SPMS, CentraleSupélec/CNRS, Uni 19/23

"constrained DFT" versus \triangle SCF

- BTO treated in \triangle SCF and c-SCF.
- Final structure are similar: cubic paraelectric.

"constrained DFT" versus Δ SCF

Charles Paillard Laboratoire SPMS, CentraleSupélec/CNRS, Uni 21/23

▲ロト ▲御 ▶ ▲ 語 ▶ ▲ 語 ▶ ● 通 ● の Q (2)

"constrained DFT" versus Δ SCF

< 日 > < 同 > < 回 > < 回 > < 回 >

"constrained DFT" versus Δ SCF

> < 国 > < 国 >

- nqFD e⁻ in conduction bands with μ_e
- nqFD h⁺ in valence bands with μ_h
- Input: occopt 9, tsmear, ival,nqfd
- Complementary to Δ SCF method.
- Perspectives:

Summary

- different concentrations of holes and electrons (charged system).
- DFPT

Thanks & Acknowledgements

CNrs

CentraleSupélec

Pr. Laurent Bellaiche Jean-Michel Beuken Pr. Éric Bousquet **Thank you!**

