
Building and installing ABINIT
A matter of collaborations

y.pouillon@simuneatomistics.com

mailto:y.pouillon@simuneatomistics.com


Donostia-San Sebastián, Spain
https://www.simuneatomistics.com/
info@simuneatomistics.com

● Make DFT software usable by industry

● Contribute directly to open-source packages

● Train researchers & engineers in atomistic 
simulations

● Create synergies between universities and 
companies

Atomistic
Simulation
Advanced
Platform

https://www.simuneatomistics.com/
https://www.simuneatomistics.com/
mailto:info@simuneatomistics.com


We hire!

Simune is looking for a developer,
If interested please contact:

careers@simuneatomistics.com

mailto:careers@simuneatomistics.com


ABINIT over time, seen from the build 
system



2004-2013: one-dimensional polarisation

Personal 
Computers HPC

Focus on compilers, automation, portability



2013-Now: Multidimensional polarisation

Personal 
Computers HPC Complex 

Workflows

Jupyter Notebooks

Black Boxes

Traditional
MPI + OpenMP

Hybrid architectures 
+ Exascale



Impact on the build system

Requirements: support at the same time …

● Beginner end-users with laptops and highly-automated frameworks with server farms

● Sliced calculations with high verbosity and wrapped highly-optimised black-box runs

● Traditional parallelism and mixes of OpenMP, MPI, GPUs, FPGAs, …, on new 
architectures

+ A myriad of intermediate cases
+ Remember the developers!



Addressing the combinatorial explosion

● Minimum number of generic user interfaces for build systems

● Architectural layering: low-level and shareable vs. high-level and specific

● Higher modularity: libraries, source code, data flow

● Comprehensive automation strategies

● Multiple paths to multiple solutions: fallbacks, ESL Bundle, EasyBuild, 
Spack, …



Common denominator

Must be based on

multilateral

COLLABORATIONS



Let’s build ABINIT!



Who builds ABINIT?

Profiles

● End users

● Developers

● Maintainers & Testers

● Scripts & automated frameworks

Sectors

● Education (Students & Teachers)

● HPC

● Academic Research

● Industrial Research + R&D



Workflow

● Autotools trilogy: configure, make, make install

● Optionally: make check before make install

● Most critical step: configure
○ Adapt the build to the user’s computer
○ Help beginners without hindering experts
○ Provide hints when something goes wrong
○ Communication through command-line options
○ Quick-and-dirty help with dependencies: ABINIT Fallbacks



Configure options (details on Friday)

● Conventions
○ --enable-feature: internal switches of ABINIT, only yes or no
○ --with-package: external dependencies and their behaviors, can be yes, no, or a path

● Linear algebra
○ --with-linalg: where to look for libraries, or let the build system decide if omitted
○ --with-linalg-flavor: what kind of libraries to look for, e.g. Netlib or MKL
○ If not sufficient, can be overridden by e.g. LINALG_LIBS=”...”
○ Interacts with --with-mpi option (automated): decide whether to look for ScaLAPACK
○ Influences which values --with-fft-flavor can take
○ Internally: complex heuristic to cover as many configurations as possible



Collaboration between expertise levels

● Beginner
○ Run configure without command-line option
○ Gather hints for missing dependencies
○ Get help from more expert users (direct, forum, documentation)
○ Use documented configuration template: ~abinit/doc/build/config-template.ac9

● Intermediate
○ Use command-line options to tune configure
○ Fine-tune config file with experts (direct, forum, documentation)
○ Help beginners (direct, forum, documentation)

● Expert
○ Use environment variables to tune configure
○ Help intermediate users/developers and beginners (direct, forum, documentation)

All:
Report problems, at 
least on Forum!



Beyond the build system



Collaborations within the community

Electronic Structure library: https://esl.cecam.org/

● On Gitlab: 
https://gitlab.com/ElectronicStructureLibrary

● ESL Bundle: Python-based meta-build system

● ESL Demonstrator: understand code needs

● ESCDF: exchange data between DFT codes

https://esl.cecam.org/
https://gitlab.com/ElectronicStructureLibrary


HPC-oriented collaborations

● Build frameworks
○ EasyBuild
○ Spack

● Containerised builds
○ Docker (CI, CD, distribution)
○ Singularity (HPC)

● Collaborations
○ ESL & EasyBuilders
○ ESL & MOLSSI
○ CoEs: E-CAM, MaX, POP, …



Data-oriented collaborations

● Text-based files
○ Input files: FDF ⇒ LibFDF
○ NC pseudos ⇒ PSML, XMLF90, LibPSML
○ PAW datasets ⇒ PAW-XML, LibPAW
○ JSON, YAML ⇒ Python, BigDFT

● Binary files
○ HDF5, NetCDF
○ ESCDF, LibESCDF (under development)



Current plans

● Improve error messages and hints provided by configure

● Improve support for Intel OneAPI + FFTW side effects

● Improve HDF5 and NetCDF detection

● Unify build-system UIs of libraries, utilities & generators
(AtomPAW upcoming)

● Develop a testing & templating framework for build systems

● Get rid of the circular dependency between BigDFT & ABINIT?



Thank you for your time!


