Calculating the flexoelectric tensor with ABINIT

Miquel Royo, Matteo Springolo and Massimiliano Stengel

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

Outline

I INTRODUCTION

II BULK FLEXOELECTRICITY

- First-principles theory of flexoelectricity
- Usage of the ABINIT implementation
- Numerical example: bulk flexoelectric tensor of SrTiO₃

III FINITE SIZE SAMPLES

- Surface piezoelectricity
- Flexural deformation in practice
- Numerical example: total flexovoltage response of 2D materials

V SUMMARY AND CONCLUSIONS

INTRODUCTION Electromechanical Response

PIEZOELECTRICITY

$$P_{\alpha} = e_{\alpha\beta\gamma} \varepsilon_{\beta\gamma}$$

- P response to uniform strain
- Few materials display this effect
- Size-independent property

FLEXOELECTRICITY

$$P_{\alpha} = \mu_{\alpha\lambda,\beta\gamma} \frac{\partial \varepsilon_{\beta\gamma}}{\partial r_{\lambda}}$$

- P response to strain gradient
- <u>Universal</u> property of all materials
- Scales as the inverse of the sample size

Why Does Flexoelectricity Matter?

Fundamental Interest: study of curvature effects on material properties

INTRODUCTION Necessity of a First-Principles Theory

First-principles (*"ab initio"*): using fundamental quantum mechanics to calculate the properties of real materials

EXPERIMENT

Bend the sample & measure the transient current

<u>OUTCOME</u>

Lots of different contributions... ...only their overall sum is accessible!

Density Functional Theory (DFT) is a powerful "theoretical microscope" that can isolate the individual effects

PROBLEM: Translational symmetry is broken!

Cannot use Bloch theorem, plane waves, etc.?

Outline

INTRODUCTION

II BULK FLEXOELECTRICITY

- First-principles theory of flexoelectricity
- Usage of the ABINIT implementation
- Numerical example: bulk flexoelectric tensor of SrTiO₃

III FINITE SIZE SAMPLES

- Surface piezoelectricity
- Flexural deformation in practice
- Numerical example: total flexovoltage response of 2D materials

V SUMMARY AND CONCLUSIONS

Solution Via Acoustic Phonons

FIRST-PRINCIPLES THEORY OF BULK FLEXOELECTRICITY

Solution Via Acoustic Phonons

Modulated displacement field **u** (deformation wave) $u_{\beta}(\mathbf{r}) = \lambda e^{i\mathbf{q}\cdot\mathbf{r}}$

Can recast gradient effects as a long-wave expansion in the wave vector q

• Allows to perform calculations on a primitive cell by using DFPT

 $O(q^1)$: uniform strain

 $O(q^2)$: strain gradient

^{10&}lt;sup>th</sup> ABINIT Developers Workshop, June 2021

FIRST-PRINCIPLES THEORY OF BULK FLEXOELECTRICITY Towards a Practical Scheme

• Intermediate "low-level" quantities

TRANSLATIONPIEZOFLEXO $\bar{P}_{\alpha}(\mathbf{q}) = +i\lambda q_{\gamma}$ $\bar{e}_{\alpha\beta\gamma} -\lambda q_{\gamma}q_{\delta}$ $\bar{\mu}_{\alpha\delta,\beta\gamma} + \cdots$ electronic polarization $|f(\mathbf{q})\rangle = |\beta\rangle$ $|\Lambda_{\beta\gamma}\rangle$ $|C_{\delta,\beta\gamma}\rangle$ atomic forces $|u(\mathbf{q})\rangle = |\beta\rangle$ $|\Gamma_{\beta\gamma}\rangle$ $|L_{\delta,\beta\gamma}\rangle$ atomic displacements

• Notation convention: bra/ket (N = number of basis atoms)

 $Z_{\kappa\rho}^{(\alpha)} = \langle \kappa \rho | Z^{(\alpha)} \rangle \qquad \text{Born effective charges (3N-dimensional vector)}$ $\Phi_{\kappa\rho\kappa'\sigma} = \langle \kappa \rho | \Phi | \kappa'\sigma \rangle . \qquad \text{force-constants matrix (3N x 3N operator)}$ $\overbrace{\kappa,\kappa' \qquad \text{sublattice indices}}_{\alpha,\beta,\dots \qquad \text{Cartesian directions}}$

Piezo vs. Flexo Tensors: similar...

FIRST-PRINCIPLES THEORY OF BULK FLEXOELECTRICITY

Interpretation of new terms

FIRST-PRINCIPLES THEORY OF BULK FLEXOELECTRICITY Basic Ingredients: Classification

Uniform Response

Second derivatives of the energy w.r.t. electric field (E), phonon (τ) or strain (ϵ)

 ϵ = dielectric tensor c = elastic tensor

Spatial Dispersion (1st order)

Third derivatives of the energy w.r.t. two perturbations and the momentum wave-vector (\mathbf{q})

 ${f G}$ = natural optical activity

 \mathcal{D} = acoustical activity

Theory and ABINIT implementation: M. Royo and M. Stengel, Phys. Rev. X **9**, 021050 (2019) M. Royo and M. Stengel, *in preparation*.

DETAILS OF THE IMPLEMENTATION

Example of long-wave DFPT ABINIT run

# Cubic STO: computation of the FxE Tensor		#Set 4 : Response function # electric field and strain p		
ndtset	5			a o or ann p
		getddk4	2	
#Set 1: Gro	ound state self-consistency	kptopt4	2	
	'	rfelfd4	3	
getwfk1	0	rfphon4	1	
kptopt1	1	rfatpol4	15	
ngpt1	0	rfdir4	111	
tolvrs1	1.0d-18	tolvrs4	1.0d-1	0
		prepalw4	1	# Dead
#Set 2: Res	sponse function calculation of d/dk	• •		
		#Set 5: Long-wave m		ve magnit
iscf2	-3		•	-
kptopt2	2	optdriver5	10	# Activ
rfelfd2	2	kptopt5	2	
tolwfr2	1.0d-22	get1wf5	4	
rfdir2	111	get1den5	4	
		getddk5	2	
#Set 3: Res	sponse function calculation of d2/dkdk	getdkdk5	3	
		lw_flexo5	1	# Calcu
getddk3	2			
iscf3	-3	#Common i	n <mark>put v</mark> ar	riables
kptopt3	2	getwfk	1	
rf2_dkdk3	1	useylm	1	
tolwfr3	1.0d-22	nqpt	1	
		qpt	0.0d+(00 0.0d+

calculation of q=0 phonons, perturbations

kptopt4 rfelfd4	2 3	
rfphon4	1	
rfatpol4	15	
rfdir4	111	
tolvrs4	1.0d-10	
prepalw4	1 7	# Deactivates symmetries for the lw routines
#Set 5: Lo	ng-wave	magnitudes calculation
optdriver5 kptopt5 get1wf5	10 # 2 4	Activates long-wave driver
get1den5	4	
getddk5	2	
getdkdk5	3	
lw_flexo5	1 #	Calculates flexoelectric tensor ingredients
#Common in	nput varial	bles
getwfk	1	
useylm	1	
ngpt	1	
qpt	0.0d+00	0.0d+00 0.0d+00

Postprocessing with MRGDDB and ANADDB

MRGDDB input

STO.ddb.out
#Total DDB for complete STO FxE tensor
3
STO_o_DS1_DDB> FORCES AND STRESS
$STO_o_DS4_DDB \longrightarrow UNIFORM RESPONSE FUNCTIONS$
$STO_o_DS5_DDB \longrightarrow GRADIENT RESPONSE FUNCTIONS$

ANADDB input

flexoflag 1 # flexoelectric tensor

dieflag 3 # ion-relaxed dielectric tensor nph2l 1

piezoflag 3 # piezoelectric tensor instrflag 1 # internal strain tensor elaflag 3 # elastic tensor

NUMERICAL RESULTS Bulk Flexoelectric Coefficients of SrTiO₃

	$\bar{\mu}$	$oldsymbol{P}^{(1)} oldsymbol{\Gamma}$	$ar{C}$	$\mathbf{\Phi}^{(1)}\mathbf{\Gamma}$	μ
xx, xx	-0.891		-181.950		
xx,yy	-0.832		-157.953		-158.785
xy, xy	-0.083	0.0	-19.310	0.0	-19.392

	$ar{m{\mu}}$	$oldsymbol{P}^{(1)}oldsymbol{\Gamma}$	$ar{C}$	$oldsymbol{\Phi}^{(1)}oldsymbol{\Gamma}$	μ
xx, xx	-0.946	0.056	-68.865	3.516	-66.239
zz, zz	-0.898		-55.841		-59.259
xx, yy	-0.786	0.052	-55.977	3.416	-53.294
xx, zz	-0.830		ill defined		-61.631
zz, xx	-0.841				-47.413
xy, xy	-0.028	0.002	-4.091	0.313	-3.805
xz, xz	-0.079	0.023	-6.796	-1.292	-8.144
zx, zx	-0.081	0.013	-5.468	-1.706	-7.242

TETRAGONAL

REFERENCE POTENTIAL ISSUE

Arbitrariness in the Longitudinal and Transverse Coefficients

- Necessity of removing the macroscopic electric fields associated to long-wavelength phonons
- Dependence on which reference potential is taken to impose short-circuit EBCs (the macroscopic electrostatic potential in the implementation)
- Direct link to the theory of absolute deformation potentials

M. Stengel, PRB 92, 205115 (2015)

Outline

INTRODUCTION

II BULK FLEXOELECTRICITY

- First-principles theory of flexoelectricity
- Usage of the ABINIT implementation
- Numerical example: bulk flexoelectric tensor of SrTiO₃

III FINITE SIZE SAMPLES

- Surface piezoelectricity
- Flexural deformation in practice
- Numerical example: total flexovoltage response of 2D materials

V SUMMARY AND CONCLUSIONS

FINITE SAMPLES Surface Piezoelectricity

Surface contributions are as important as bulk ones at any thickness of the sample

The surface determines the sign of the total response!

FINITE SAMPLES Flexural Deformation in Practice

Important considerations:

- <u>Open-circuit EBCs</u> need to be imposed
- <u>Voltage response</u> rather than polarization response
- Additional <u>surface piezoelectricity</u> contributions

Springolo, Royo & Stengel, arXiv:2010.08470

Flexovoltages of several 2D materials

BULK vs. SURFACE (units: nV·m)

	$arphi^{ m G}$	$arphi^{\mathrm{M}}$	$arphi^{\mathrm{U}}$	φ
С	-2.4658	3.8456	-1.4932	-0.1134
Si	-1.9448	3.5106	-1.5073	0.0585
P(zigzag)	-5.1229	6.4059	-1.0655	0.2175
P(armchair)	-5.2086	6.4059	-1.2564	-0.0591
BN	-2.4433	3.5744	-1.3320	-0.2009
MoS_2	-9.3319	10.2987	-1.2937	-0.3269
WSe_2	-11.1874	12.0630	-1.2655	-0.3899
SnS_2	-6.8832	8.3647	-1.1223	0.3592
				/
	Bulk	Surface		

CLAMPED-ION vs. LATTICE-MEDIATED (units: nV·m)

	$arphi^{ m CI}$	$arphi^{ m LM}$	φ
С	-0.1134	0.0000	-0.1134
Si	0.0585	0.0000	0.0585
P (zigzag)	0.2320	-0.0151	0.2170
P (armchair)	-0.0130	-0.0461	-0.0591
BN	-0.0381	-0.1628	-0.2009
MoS_2	-0.2704	-0.0565	-0.3269
WSe_2	-0.3158	-0.0742	-0.3899
SnS_2	0.1864	0.1728	0.3592

Rich variety in magnitude and sign

Large cancelation between bulk and metric contributions

Springolo, Royo & Stengel, arXiv:2010.08470

Outline

INTRODUCTION

II BULK FLEXOELECTRICITY

- First-principles theory of flexoelectricity
- Usage of the ABINIT implementation
- Numerical example: bulk flexoelectric tensor of SrTiO₃

III FINITE SIZE SAMPLES

- Surface piezoelectricity
- Flexural deformation in practice
- Numerical example: total flexovoltage response of 2D materials

V SUMMARY AND CONCLUSIONS

Summary and Conclusions

• Surface contribution

• Bulk flexoelectric tensor μ in the official ABINIT code (since v.9.0.2)

- μ not a physical observable, we need to add:
 - Band term Absolute deformation potentials

mroyo@icmab.es

Outlook for the Longwave Driver

• Work in progress

- Extension to <u>GGA</u> functionals
- Facilitate calculating <u>absolute deformation potentials</u>

• Short term

- Extension to PSPs with XC non-linear core corrections
- Incorporation of <u>surface piezoelectricity</u> terms in ANADDB
- Optimizing performance: use of symmetries and reduction in the number of I/O operations

• Long term

- New spatial dispersion quantities
- G = <u>natural optical activity</u>
- \mathcal{D} = <u>acoustical activity</u>

Long-Wave DFPT First-Order Gradient Formula

$$\begin{split} E_{\gamma}^{\lambda_{1}^{*}\lambda_{2}} &= s \int_{\mathrm{BZ}} [d^{3}k] \sum_{m} E_{m\mathbf{k},\gamma}^{\lambda_{1}^{*}\lambda_{2}} \\ &+ \frac{1}{2} \int_{\Omega} \int (K_{\gamma}(\mathbf{r},\mathbf{r}') n^{\lambda_{1}*}(\mathbf{r}) n^{\lambda_{2}}(\mathbf{r}') d^{3}r d^{3}r' \\ &+ \frac{1}{2} \frac{\partial}{\partial q_{\gamma}} \left(\frac{\partial^{2}E}{\partial \lambda_{1}^{*}\partial \lambda_{2}} \right) \Big|_{\mathbf{q}=0}, \end{split}$$

Only response functions to uniform perturbations are necessary

One-shot Γ-point calculation

$$\begin{split} E_{m\mathbf{k},\gamma}^{\lambda_{1}^{*}\lambda_{2}} &= \langle u_{m\mathbf{k}}^{\lambda_{1}} | \partial_{\gamma} \hat{H}_{\mathbf{k}}^{(0)} | u_{m\mathbf{k}}^{\lambda_{2}} \rangle \\ &+ \langle u_{m\mathbf{k}}^{\lambda_{1}} | \partial_{\gamma} \hat{Q}_{\mathbf{k}} \, \hat{\mathcal{H}}_{\mathbf{k}}^{\lambda_{2}} | u_{m\mathbf{k}}^{(0)} \rangle + \langle u_{m\mathbf{k}}^{(0)} | \left(\hat{\mathcal{H}}_{\mathbf{k}}^{\lambda_{1}} \right)^{\dagger} \partial_{\gamma} \hat{Q}_{\mathbf{k}} | u_{m\mathbf{k}}^{\lambda_{2}} \rangle \\ &+ \langle u_{m\mathbf{k}}^{\lambda_{1}} \, \hat{\mathcal{H}}_{\mathbf{k},\gamma}^{\lambda_{2}} u_{m\mathbf{k}}^{(0)} \rangle + \langle u_{m\mathbf{k}}^{(0)} | \left(\hat{\mathcal{H}}_{\mathbf{k},\gamma}^{\lambda_{1}} \right)^{\dagger} | u_{m\mathbf{k}}^{\lambda_{2}} \rangle. \end{split}$$

Minimal computational

resources and time

Theory and ABINIT implementation: M. Royo and M. Stengel, Phys. Rev. X **9**, 021050 (2019)

mroyo@icmab.es

10th ABINIT Developers Workshop, June 2021