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example a superposition of atomic electron densities),
calculate the potentials in Eq. (24), and determine the
solutions of the KS Hamiltonian in Eq. (23). The elec-
tron density is re-calculated using these solutions, and
the cycle is repeated until convergence.

In order to establish the link with Eq. (1), we can re-
gard the KS Hamiltonian as an effective one-body oper-
ator, and make the transition to a second-quantized for-
malism by using the standard prescription (Merzbacher,
1998):

Ĥe =
X

nk,n0k0

h nk|ĤKS| n0k0iĉ†
nkĉn0k0 =

X

nk

"nk ĉ
†
nkĉnk.

(30)
This expression is useful for performing formal manip-
ulations in the study of coupled electron-phonon sys-
tems. However, Eq. (30) implicitly introduces the dras-
tic approximation that the electronic system can be de-
scribed in terms of sharp quasiparticle excitations. A
field-theoretic approach that does not rely on any such
approximation is discussed in Sec. IV.

2. Electron-phonon coupling Hamiltonian to first- and
second-order in the atomic displacements

Within the DFT Kohn-Sham formalism, the coupling
Hamiltonian appearing in the second line of Eq. (1) is
obtained by expanding the Kohn-Sham effective potential
in terms of the nuclear displacements �⌧p from their
equilibrium positions ⌧ 0

p
. The potential to first order in

the displacements is:

V
KS({⌧p}) = V

KS({⌧ 0
p
}) +

X
↵p
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KS
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�⌧↵p. (31)

This expression can be rewritten into normal mode coor-
dinates using Eq. (20):
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having defined:
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, (33)
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From the last expression we see that @↵,qv
KS and

�q⌫v
KS are lattice-periodic functions. The transition

to second quantization is performed as in Eq. (30)
(Merzbacher, 1998):

Ĥep =
X

nk,n0k0

h nk|V KS({⌧p})�V
KS({⌧ 0

p
})| n0k0iĉ†

nkĉn0k0 ,

(36)

where the brakets indicate an integral over the supercell.
After using Eqs. (29), (32)-(35), and (A1) we have:

Ĥep = N
� 1

2
p

X

k,q
mn⌫

gmn⌫(k,q) ĉ
†
mk+qĉnk(âq⌫ + â

†
�q⌫), (37)

where the electron-phonon matrix element is given by:

gmn⌫(k,q) = humk+q|�q⌫v
KS|unkiuc. (38)

Here the subscript ‘uc’ indicates that the integral is car-
ried out within one unit cell of the crystal. The coupling
Hamiltonian in Eq. (37) yields the energy of an entire
supercell. In the case of the three translational modes at
|q|=0 we set the matrix elements gmn⌫(k,q) to zero, as
a consequence of the acoustic sum rule (see discussion in
Sec.IX.A.1).

Taken together, Eqs. (22), (30), and (37) constitute
the starting point of most first-principles calculations
of electron-phonon interactions. It remains to be seen
how one calculates the electron-phonon matrix elements
gmn⌫(k,q); the most common procedures are described
in Sec. III.B.3.

Before proceeding, we discuss briefly the second-order
coupling Hamiltonian which appears in the third and
fourth lines of Eq. (1). The rationale for incorporat-
ing this extra term is that the expansion of the Kohn-
Sham potential to first order in the atomic displacements,
Eq. (31), is somewhat inconsistent with the choice of ex-
panding the total potential energy in Eq. (12) to second
order in the atomic displacements. This aspect was dis-
cussed by Allen and Heine (1976) and Allen (1978). In
order to obtain an electron-phonon coupling Hamiltonian
including terms of second-order in the displacements, we
must include the second derivatives of the Kohn-Sham
potential in Eq. (31), and follow the same steps which
led to Eq. (37). By calling the extra term Ĥ

(2)
ep we have:

Ĥ
(2)
ep = N
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p

X
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0

g
DW
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†
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†
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where

g
DW
mn⌫⌫0(k,q,q0) =

1

2
humk+q+q0 |�q⌫�q0⌫0v

KS|unkiuc.
(40)

The variations �q⌫ are the same as in Eqs. (33)-(35).
The second-order coupling Hamiltonian in Eq. (39) is

considerably more involved than its first-order counter-
part; the increased complexity partly explains why in
the literature this term has largely been ignored. So far
the Hamiltonian Ĥ

(2)
ep has only been described using an

approximation based on first-order perturbation theory
(Allen and Heine, 1976). In this special case, the only
terms in Eq. (39) that can modify the electron excitation
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Ab initio lattice dynamics
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Dielectric matrix formalism
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'� ' '� ⌧ ⌧ � ⌧ SCF kernel
noninteracting �0 �
irreducible �ir fxc
short-range �sr ⇢sr �sr fxc + ⌫sr
screened � ⇢ � fxc + ⌫

TABLE I. Summary of the main response functions that we
shall consider in this work, together with the SCF kernel that
governs the electron-electron interactions in each case. The
three central columns refer to the charge response to a scalar
potential (�), the charge response to a phonon (⇢), or the
atomic forces induced by a phonon (�). [They can all be
expressed as second derivatives of the energy with respect to
scalar potential (') and/or phonon (⌧) perturbations.] fxc is
the exchange and correlation kernel; ⌫ is the Coulomb kernel;
for the meaning of the short-range (sr) label, see text.

veloping a fundamental theory of the dielectric screening
and force constants in two dimensional crystals. The
long-range part is derived in full generality by studying
the nonanalytic properties of the Coulomb kernel in the
long-wavelength limit. After introducing the screening
via a Dyson equation, the resulting expression naturally
lends itself to a multipolar expansion, where the basic
ingredients are the first-order charge density response to
atomic displacements and the static polarizability of the
2D layer. Such derivation yields an exact description of
the long-range screening and force constants in 2D up to
an arbitrary multipolar order, in terms of well-defined
response properties of the system that can be readily
calculated from first principles. Based on this theory,
we identify a previously overlooked term in the dipole-
dipole interactions, and we generalize the formula to the
next lowest order in q, by incorporating the dynami-
cal quadrupole tensor. [32] Extensive numerical tests on
monolayer BN, SnS2 and BaTiO3 membranes are pro-
vided to benchmark our method.

II. THEORY

A. The screened Coulomb interaction

Within the adiabatic approximation, the screened
Coulomb interaction W links the screened potential,
V

scr, to an external charge perturbation, ⇢ext, as

V
scr(r) =

Z
d
3
r
0
W (r, r0)⇢ext(r0). (1)

W is, in turn, defined in terms of the bare Coulomb ker-
nel, ⌫, and the irreducible polarizability �ir,

W = (⌫�1 � �ir)
�1

, (2)

where the latter is defined as the (induced) charge re-
sponse of the interacting electron system to the screened
potential. Note that within density-functional ap-
proaches �ir contains the e↵ects of the exchange and

correlation kernel, fxc, and can be defined in terms of
the independent-particle polarizability, �0, via a Dyson
equation,

�ir = �0 + �0fxc�ir. (3)

A similar Dyson equation yields the reducible or screened
polarizability operator (providing the screened charge re-
sponse to the external potential),

� = �0 + �0(fxc + ⌫)�

= �ir + �ir⌫�. (4)

The conceptual basis of our method consists in sepa-
rating the bare Coulomb kernel into a short-range (SR)
part and a remainder long-range part,

⌫ = ⌫sr + ⌫lr. (5)

We shall assume that ⌫sr decays exponentially in real
space or, equivalently, can be written as an analytic func-
tion of the wavevector q in reciprocal space; the nonana-
lytic part of ⌫ is therefore contained in ⌫lr. We can then
define a screened short-range Coulomb interaction,

Wsr = (⌫�1
sr � �ir)

�1
, (6)

and similarly an intermediate polarizability function, �sr,
where the electrons interact via the exchange-correlation
and short-range part of the Coulomb kernel,

�sr = �0 + �0(fxc + ⌫sr)�sr

= �ir + �ir⌫sr�sr. (7)

Finally, we define the screened long-range interaction as

Wlr = (⌫�1
lr � �sr)

�1
. (8)

The rationale consists in reabsorbing the short-range (lo-
cal fields) part of the Coulomb interactions into the def-
initions of the SR (intermediate) polarizability, �sr, and
screened interaction, Wsr, which are both analytic func-
tions of q. The e↵ect of the long-range macroscopic elec-
tric fields, contained in ⌫lr, can then be conveniently de-
scribed in terms of few basic ingredients that are straight-
forward to calculate.

To see how this strategy works in the specific context
of lattice dynamics, we shall follow the dielectric matrix
formalism established in Ref. [3]. In our notation, the
dynamical matrix can be written as

�↵,0� = ⇢
ext
↵ ·W · ⇢ext0� , (9)

where the external charges refer to the point dipole in-
duced by the displacement of the nuclei. The above defi-
nitions naturally lead to a partition of the force-constant
matrix into a short-range and a long-range part,

� = �sr + �lr
, (10)

�sr
↵,0� = ⇢

ext
↵ ·Wsr · ⇢ext0� , (11)

�lr
↵,0� = ⇢

sr
↵ ·Wlr · ⇢sr0� , (12)

“Microscopic Theory of Force Constants in the Adiabatic Approximation”
Robert M. Pick, Morrel H. Cohen, and Richard M. Martin, Phys. Rev. B 1, 910 (1970)

force-constants matrix
“bare” point dipoles produced

by nuclear displacement

screened Coulomb interaction

Long-range force constants stem from nonanalytic behavior of ! at " = 0



Screened Coulomb interaction
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'� ' '� ⌧ ⌧ � ⌧ SCF kernel
noninteracting �0 �
irreducible �ir fxc
short-range �sr ⇢sr �sr fxc + ⌫sr
screened � ⇢ � fxc + ⌫

TABLE I. Summary of the main response functions that we
shall consider in this work, together with the SCF kernel that
governs the electron-electron interactions in each case. The
three central columns refer to the charge response to a scalar
potential (�), the charge response to a phonon (⇢), or the
atomic forces induced by a phonon (�). [They can all be
expressed as second derivatives of the energy with respect to
scalar potential (') and/or phonon (⌧) perturbations.] fxc is
the exchange and correlation kernel; ⌫ is the Coulomb kernel;
for the meaning of the short-range (sr) label, see text.

veloping a fundamental theory of the dielectric screening
and force constants in two dimensional crystals. The
long-range part is derived in full generality by studying
the nonanalytic properties of the Coulomb kernel in the
long-wavelength limit. After introducing the screening
via a Dyson equation, the resulting expression naturally
lends itself to a multipolar expansion, where the basic
ingredients are the first-order charge density response to
atomic displacements and the static polarizability of the
2D layer. Such derivation yields an exact description of
the long-range screening and force constants in 2D up to
an arbitrary multipolar order, in terms of well-defined
response properties of the system that can be readily
calculated from first principles. Based on this theory,
we identify a previously overlooked term in the dipole-
dipole interactions, and we generalize the formula to the
next lowest order in q, by incorporating the dynami-
cal quadrupole tensor. [32] Extensive numerical tests on
monolayer BN, SnS2 and BaTiO3 membranes are pro-
vided to benchmark our method.

II. THEORY

A. The screened Coulomb interaction

Within the adiabatic approximation, the screened
Coulomb interaction W links the screened potential,
V

scr, to an external charge perturbation, ⇢ext, as

V
scr(r) =

Z
d
3
r
0
W (r, r0)⇢ext(r0). (1)

W is, in turn, defined in terms of the bare Coulomb ker-
nel, ⌫, and the irreducible polarizability �ir,

W = (⌫�1 � �ir)
�1

, (2)

where the latter is defined as the (induced) charge re-
sponse of the interacting electron system to the screened
potential. Note that within density-functional ap-
proaches �ir contains the e↵ects of the exchange and

correlation kernel, fxc, and can be defined in terms of
the independent-particle polarizability, �0, via a Dyson
equation,

�ir = �0 + �0fxc�ir. (3)

A similar Dyson equation yields the reducible or screened
polarizability operator (providing the screened charge re-
sponse to the external potential),

� = �0 + �0(fxc + ⌫)�

= �ir + �ir⌫�. (4)

The conceptual basis of our method consists in sepa-
rating the bare Coulomb kernel into a short-range (SR)
part and a remainder long-range part,

⌫ = ⌫sr + ⌫lr. (5)

We shall assume that ⌫sr decays exponentially in real
space or, equivalently, can be written as an analytic func-
tion of the wavevector q in reciprocal space; the nonana-
lytic part of ⌫ is therefore contained in ⌫lr. We can then
define a screened short-range Coulomb interaction,

Wsr = (⌫�1
sr � �ir)

�1
, (6)

and similarly an intermediate polarizability function, �sr,
where the electrons interact via the exchange-correlation
and short-range part of the Coulomb kernel,

�sr = �0 + �0(fxc + ⌫sr)�sr

= �ir + �ir⌫sr�sr. (7)

Finally, we define the screened long-range interaction as

Wlr = (⌫�1
lr � �sr)

�1
. (8)

The rationale consists in reabsorbing the short-range (lo-
cal fields) part of the Coulomb interactions into the def-
initions of the SR (intermediate) polarizability, �sr, and
screened interaction, Wsr, which are both analytic func-
tions of q. The e↵ect of the long-range macroscopic elec-
tric fields, contained in ⌫lr, can then be conveniently de-
scribed in terms of few basic ingredients that are straight-
forward to calculate.

To see how this strategy works in the specific context
of lattice dynamics, we shall follow the dielectric matrix
formalism established in Ref. [3]. In our notation, the
dynamical matrix can be written as

�↵,0� = ⇢
ext
↵ ·W · ⇢ext0� , (9)

where the external charges refer to the point dipole in-
duced by the displacement of the nuclei. The above defi-
nitions naturally lead to a partition of the force-constant
matrix into a short-range and a long-range part,

� = �sr + �lr
, (10)

�sr
↵,0� = ⇢

ext
↵ ·Wsr · ⇢ext0� , (11)

�lr
↵,0� = ⇢

sr
↵ ·Wlr · ⇢sr0� , (12)

screened potential produced by an external charge

analytic

!(#, #%) = 1
|# − #%| “bare” Coulomb kernel
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'� ' '� ⌧ ⌧ � ⌧ SCF kernel
noninteracting �0 �
irreducible �ir fxc
short-range �sr ⇢sr �sr fxc + ⌫sr
screened � ⇢ � fxc + ⌫

TABLE I. Summary of the main response functions that we
shall consider in this work, together with the SCF kernel that
governs the electron-electron interactions in each case. The
three central columns refer to the charge response to a scalar
potential (�), the charge response to a phonon (⇢), or the
atomic forces induced by a phonon (�). [They can all be
expressed as second derivatives of the energy with respect to
scalar potential (') and/or phonon (⌧) perturbations.] fxc is
the exchange and correlation kernel; ⌫ is the Coulomb kernel;
for the meaning of the short-range (sr) label, see text.

veloping a fundamental theory of the dielectric screening
and force constants in two dimensional crystals. The
long-range part is derived in full generality by studying
the nonanalytic properties of the Coulomb kernel in the
long-wavelength limit. After introducing the screening
via a Dyson equation, the resulting expression naturally
lends itself to a multipolar expansion, where the basic
ingredients are the first-order charge density response to
atomic displacements and the static polarizability of the
2D layer. Such derivation yields an exact description of
the long-range screening and force constants in 2D up to
an arbitrary multipolar order, in terms of well-defined
response properties of the system that can be readily
calculated from first principles. Based on this theory,
we identify a previously overlooked term in the dipole-
dipole interactions, and we generalize the formula to the
next lowest order in q, by incorporating the dynami-
cal quadrupole tensor. [32] Extensive numerical tests on
monolayer BN, SnS2 and BaTiO3 membranes are pro-
vided to benchmark our method.

II. THEORY

A. The screened Coulomb interaction

Within the adiabatic approximation, the screened
Coulomb interaction W links the screened potential,
V

scr, to an external charge perturbation, ⇢ext, as

V
scr(r) =

Z
d
3
r
0
W (r, r0)⇢ext(r0). (1)

W is, in turn, defined in terms of the bare Coulomb ker-
nel, ⌫, and the irreducible polarizability �ir,

W = (⌫�1 � �ir)
�1

, (2)

where the latter is defined as the (induced) charge re-
sponse of the interacting electron system to the screened
potential. Note that within density-functional ap-
proaches �ir contains the e↵ects of the exchange and

correlation kernel, fxc, and can be defined in terms of
the independent-particle polarizability, �0, via a Dyson
equation,

�ir = �0 + �0fxc�ir. (3)

A similar Dyson equation yields the reducible or screened
polarizability operator (providing the screened charge re-
sponse to the external potential),

� = �0 + �0(fxc + ⌫)�

= �ir + �ir⌫�. (4)

The conceptual basis of our method consists in sepa-
rating the bare Coulomb kernel into a short-range (SR)
part and a remainder long-range part,

⌫ = ⌫sr + ⌫lr. (5)

We shall assume that ⌫sr decays exponentially in real
space or, equivalently, can be written as an analytic func-
tion of the wavevector q in reciprocal space; the nonana-
lytic part of ⌫ is therefore contained in ⌫lr. We can then
define a screened short-range Coulomb interaction,

Wsr = (⌫�1
sr � �ir)

�1
, (6)

and similarly an intermediate polarizability function, �sr,
where the electrons interact via the exchange-correlation
and short-range part of the Coulomb kernel,

�sr = �0 + �0(fxc + ⌫sr)�sr

= �ir + �ir⌫sr�sr. (7)

Finally, we define the screened long-range interaction as

Wlr = (⌫�1
lr � �sr)

�1
. (8)

The rationale consists in reabsorbing the short-range (lo-
cal fields) part of the Coulomb interactions into the def-
initions of the SR (intermediate) polarizability, �sr, and
screened interaction, Wsr, which are both analytic func-
tions of q. The e↵ect of the long-range macroscopic elec-
tric fields, contained in ⌫lr, can then be conveniently de-
scribed in terms of few basic ingredients that are straight-
forward to calculate.

To see how this strategy works in the specific context
of lattice dynamics, we shall follow the dielectric matrix
formalism established in Ref. [3]. In our notation, the
dynamical matrix can be written as

�↵,0� = ⇢
ext
↵ ·W · ⇢ext0� , (9)

where the external charges refer to the point dipole in-
duced by the displacement of the nuclei. The above defi-
nitions naturally lead to a partition of the force-constant
matrix into a short-range and a long-range part,

� = �sr + �lr
, (10)

�sr
↵,0� = ⇢

ext
↵ ·Wsr · ⇢ext0� , (11)

�lr
↵,0� = ⇢

sr
↵ ·Wlr · ⇢sr0� , (12)

“irreducible polarizability”
(charge response to screened potential)

+, : independent-particle polarizability -./ : exchange-correlation kernel
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'� ' '� ⌧ ⌧ � ⌧ SCF kernel
noninteracting �0 �
irreducible �ir fxc
short-range �sr ⇢sr �sr fxc + ⌫sr
screened � ⇢ � fxc + ⌫

TABLE I. Summary of the main response functions that we
shall consider in this work, together with the SCF kernel that
governs the electron-electron interactions in each case. The
three central columns refer to the charge response to a scalar
potential (�), the charge response to a phonon (⇢), or the
atomic forces induced by a phonon (�). [They can all be
expressed as second derivatives of the energy with respect to
scalar potential (') and/or phonon (⌧) perturbations.] fxc is
the exchange and correlation kernel; ⌫ is the Coulomb kernel;
for the meaning of the short-range (sr) label, see text.

veloping a fundamental theory of the dielectric screening
and force constants in two dimensional crystals. The
long-range part is derived in full generality by studying
the nonanalytic properties of the Coulomb kernel in the
long-wavelength limit. After introducing the screening
via a Dyson equation, the resulting expression naturally
lends itself to a multipolar expansion, where the basic
ingredients are the first-order charge density response to
atomic displacements and the static polarizability of the
2D layer. Such derivation yields an exact description of
the long-range screening and force constants in 2D up to
an arbitrary multipolar order, in terms of well-defined
response properties of the system that can be readily
calculated from first principles. Based on this theory,
we identify a previously overlooked term in the dipole-
dipole interactions, and we generalize the formula to the
next lowest order in q, by incorporating the dynami-
cal quadrupole tensor. [32] Extensive numerical tests on
monolayer BN, SnS2 and BaTiO3 membranes are pro-
vided to benchmark our method.

II. THEORY

A. The screened Coulomb interaction

Within the adiabatic approximation, the screened
Coulomb interaction W links the screened potential,
V

scr, to an external charge perturbation, ⇢ext, as

V
scr(r) =

Z
d
3
r
0
W (r, r0)⇢ext(r0). (1)

W is, in turn, defined in terms of the bare Coulomb ker-
nel, ⌫, and the irreducible polarizability �ir,

W = (⌫�1 � �ir)
�1

, (2)

where the latter is defined as the (induced) charge re-
sponse of the interacting electron system to the screened
potential. Note that within density-functional ap-
proaches �ir contains the e↵ects of the exchange and

correlation kernel, fxc, and can be defined in terms of
the independent-particle polarizability, �0, via a Dyson
equation,

�ir = �0 + �0fxc�ir. (3)

A similar Dyson equation yields the reducible or screened
polarizability operator (providing the screened charge re-
sponse to the external potential),

� = �0 + �0(fxc + ⌫)�

= �ir + �ir⌫�. (4)

The conceptual basis of our method consists in sepa-
rating the bare Coulomb kernel into a short-range (SR)
part and a remainder long-range part,

⌫ = ⌫sr + ⌫lr. (5)

We shall assume that ⌫sr decays exponentially in real
space or, equivalently, can be written as an analytic func-
tion of the wavevector q in reciprocal space; the nonana-
lytic part of ⌫ is therefore contained in ⌫lr. We can then
define a screened short-range Coulomb interaction,

Wsr = (⌫�1
sr � �ir)

�1
, (6)

and similarly an intermediate polarizability function, �sr,
where the electrons interact via the exchange-correlation
and short-range part of the Coulomb kernel,

�sr = �0 + �0(fxc + ⌫sr)�sr

= �ir + �ir⌫sr�sr. (7)

Finally, we define the screened long-range interaction as

Wlr = (⌫�1
lr � �sr)

�1
. (8)

The rationale consists in reabsorbing the short-range (lo-
cal fields) part of the Coulomb interactions into the def-
initions of the SR (intermediate) polarizability, �sr, and
screened interaction, Wsr, which are both analytic func-
tions of q. The e↵ect of the long-range macroscopic elec-
tric fields, contained in ⌫lr, can then be conveniently de-
scribed in terms of few basic ingredients that are straight-
forward to calculate.

To see how this strategy works in the specific context
of lattice dynamics, we shall follow the dielectric matrix
formalism established in Ref. [3]. In our notation, the
dynamical matrix can be written as

�↵,0� = ⇢
ext
↵ ·W · ⇢ext0� , (9)

where the external charges refer to the point dipole in-
duced by the displacement of the nuclei. The above defi-
nitions naturally lead to a partition of the force-constant
matrix into a short-range and a long-range part,

� = �sr + �lr
, (10)

�sr
↵,0� = ⇢

ext
↵ ·Wsr · ⇢ext0� , (11)

�lr
↵,0� = ⇢

sr
↵ ·Wlr · ⇢sr0� , (12)

2

'� ' '� ⌧ ⌧ � ⌧ SCF kernel
noninteracting �0 �
irreducible �ir fxc
short-range �sr ⇢sr �sr fxc + ⌫sr
screened � ⇢ � fxc + ⌫

TABLE I.
respfn
Summary of the main response functions that we

shall consider in this work, together with the SCF kernel that
governs the electron-electron interactions in each case. The
three central columns refer to the charge response to a scalar
potential (�), the charge response to a phonon (⇢), or the
atomic forces induced by a phonon (�). [They can all be
expressed as second derivatives of the energy with respect to
scalar potential (') and/or phonon (⌧) perturbations.] fxc is
the exchange and correlation kernel; ⌫ is the Coulomb kernel;
for the meaning of the short-range (sr) label, see text.

tions, [11, 19–23] electronic excitations, [14, 15, 24–27]
plasmonics [17, 28–31], etc.

Here we remove the aforementioned limitations by de-
veloping a fundamental theory of the dielectric screening
and force constants in two dimensional crystals. The
long-range part is derived in full generality by studying
the nonanalytic properties of the Coulomb kernel in the
long-wavelength limit. After introducing the screening
via a Dyson equation, the resulting expression naturally
lends itself to a multipolar expansion, where the basic
ingredients are the first-order charge density response to
atomic displacements and the static polarizability of the
2D layer. Such derivation yields an exact description of
the long-range screening and force constants in 2D up to
an arbitrary multipolar order, in terms of well-defined
response properties of the system that can be readily
calculated from first principles. Based on this theory,
we identify a previously overlooked term in the dipole-
dipole interactions, and we generalize the formula to the
next lowest order in q, by incorporating the dynami-
cal quadrupole tensor. [32] Extensive numerical tests on
monolayer BN, SnS2 and BaTiO3 membranes are pro-
vided to benchmark our method.

II. THEORY

{sec:theory}
A. The screened Coulomb interaction

{sec:screen}
Within the adiabatic approximation, the screened

Coulomb interaction W links the screened potential,
V

scr, to an external charge perturbation, ⇢ext, as

V
scr(r) =

Z
d
3
r
0
W (r, r0)⇢ext(r0). (1)

W is, in turn, defined in terms of the bare Coulomb ker-
nel, ⌫, and the irreducible polarizability �ir,

W = (⌫�1 � �ir)
�1

, (2)

where the latter is defined as the (induced) charge re-
sponse of the interacting electron system to the screened

potential. Note that within density-functional ap-
proaches �ir contains the e↵ects of the exchange and
correlation kernel, fxc, and can be defined in terms of
the independent-particle polarizability, �0, via a Dyson
equation,

�ir = �0 + �0fxc�ir. (3)

A similar Dyson equation yields the reducible or screened
polarizability operator (providing the screened charge re-
sponse to the external potential),

� = �0 + �0(fxc + ⌫)�

= �ir + �ir⌫�. (4)

The conceptual basis of our method consists in sepa-
rating the bare Coulomb kernel into a short-range (SR)
part and a remainder long-range part,

⌫ = ⌫sr + ⌫lr. (5) {nu_decomp}

We shall assume that ⌫sr decays exponentially in real
space or, equivalently, can be written as an analytic func-
tion of the wavevector q in reciprocal space; the nonana-
lytic part of ⌫ is therefore contained in ⌫lr. We can then
define a screened short-range Coulomb interaction,

Wsr = (⌫�1
sr � �ir)

�1
, (6)

and similarly an intermediate polarizability function, �sr,
where the electrons interact via the exchange-correlation
and short-range part of the Coulomb kernel,

�sr = �0 + �0(fxc + ⌫sr)�sr

= �ir + �ir⌫sr�sr. (7)

Finally, we define the screened long-range interaction as

Wlr = (⌫�1
lr � �sr)

�1
. (8) {wlr}

The rationale consists in reabsorbing the short-range (lo-
cal fields) part of the Coulomb interactions into the def-
initions of the SR (intermediate) polarizability, �sr, and
screened interaction, Wsr, which are both analytic func-
tions of q. The e↵ect of the long-range macroscopic elec-
tric fields, contained in ⌫lr, can then be conveniently de-
scribed in terms of few basic ingredients that are straight-
forward to calculate.

To see how this strategy works in the specific context
of lattice dynamics, we shall follow the dielectric matrix
formalism established in Ref. [3]. In our notation, the
dynamical matrix can be written as

�↵,0� = ⇢
ext
↵ ·W · ⇢ext0� , (9) {phiscr}

where the external charges refer to the point dipole in-
duced by the displacement of the nuclei. The above defi-
nitions naturally lead to a partition of the force-constant
matrix into a short-range and a long-range part,

� = �sr + �lr
, (10) {phi_decomp}
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�sr
↵,0� = ⇢

ext
↵ ·Wsr · ⇢ext0� , (11) {phisr}

�lr
↵,0� = ⇢

sr
↵ ·Wlr · ⇢sr0� , (12) {philr}

Here ⇢↵, the self-consistent charge response to a phonon
as calculated within the SR electrostatics, can be defined
as

⇢
sr = (1 + �irWsr)⇢

ext
, (13)

or equivalently as

(1� �ir⌫sr)⇢
sr = ⇢

ext
. (14)

Crucially, ⇢sr↵ is an analytic function of q, which means
that the material-dependent response functions entering
the definition of �lr, are all analytic. This property is key
in the perspective of an e�cient representation of �lr, as
it allows for a long-wave expansion of both ⇢

sr
↵ and �sr in

a vicinity of the zone center. Typically, only few leading
terms need to be retained for an accurate description of
the long-range forces, and such quantities are straight-
forward to calculate within modern implementations of
density-functional perturbation theory (DFPT). [5, 32]

In the framework of DFPT, the main response func-
tions discussed in the above paragraphs (see Table I for
a summary) can be recast as the second-order variation
of the energy with respect to either two scalar poten-
tial perturbations (polarizability �), two phonons (force-
constants matrix �), or a scalar potential and a phonon
(charge response ⇢). The various “flavors” of each re-
sponse function (irreducible, screened, etc.) are then
determined by the type of self-consistent (SCF) kernel
that is used in the iterative solution of the linear-response
problem (right column in Table I). This is particularly
convenient, as it avoids the need for explicitly solving the
Dyson equations that govern dielectric screening at the
microscopic level. Moreover, DFPT methods allow for a
more straightforward incorporation of pseudopotentials,
which are awkward to treat in the context of the dielectric
matrix formalism [e.g., in Eq. (9) and (11) the first-order
nuclear potential is that of a point dipole, which implies
an all-electron framework].

In three dimensions, the above strategy has been car-
ried out first by Pick, Cohen and Martin in their seminal
work [3], by defining as ⌫lr theG = 0 part of the Coulomb
kernel in a vicinity of the zone center. Since the LR ker-
nel is defined by a single Fourier component, both �sr

and ⇢
sr
↵ are scalar functions of the wavevector q. At the

lowest order, we have

� = �q · �mac · q+ · · · , (15)

⇢↵ = �iq · Z↵ + · · · , (16)

where � and Z↵ are respectively the macroscopic di-
electric susceptibility and Born e↵ective charge tensors.
(The dots stand for higher multipolar orders that are usu-
ally neglected; a detailed discussion of their significance
can be found in Refs. 7 and 8.) We have then, by using
Eq. (8),

Wlr = (q · ✏ · q+ · · · )�1 (17)

which immediately leads, via Eq. (12), to the established
formula [3] for the dipole-dipole interaction. The remain-
der of this work will focus on how this technique can be
implemented in two dimensions, by providing an appro-
priate definition of ⌫lr in that case.

�lr
↵,0�(q) = [⇢↵(q)]

⇤ · [⌫�1
lr � �(q)]�1 · ⇢0�(q) (18)

�lr
↵,0� = ⇢

sr
↵ · (⌫�1

lr � �sr)
�1 · ⇢sr0� (19)

�lr
↵,0�(q) =

[⇢↵(q)]⇤⇢0�(q)

⌫
�1
lr � �(q)

(20)

' ⌧
' �sr ⇢

sr

⌧ ⇢
sr �sr

B. Coulomb kernel in two dimensions

{sec:kernel2d}
In reciprocal space, the Coulomb kernel can be written

as

⌫(q, kz) =
4⇡

q2 + k2z

, (21)

where we have separated the total momentum into in-
plane (q) and out-of-plane (kz) components. We shall
write this in real space along z as a function of the in-
plane momentum q by using the following identity,

⌫(q, z) = 4⇡

Z
dkz

2⇡

e
ikzz

q2 + k2z

= 2⇡
e
�q|z|

q
. (22) {yukawa}

This is the Green function for the Coulomb interactions
in open boundary conditions.
We shall now relate the above result to the Coulomb

kernel of a standard phonon calculation, as obtained
within the supercell approach. We shall assume a su-
percell of dimension L along the out-of-plane direction z,
where L is su�ciently large that the images interact only
electrostatically. Then, we shall consider a phonon prop-
agating in plane at a certain wavevector q = (qx, qy). At
this point, the three-dimensional nature of the supercell
requires us to choose the out-of-plane component of the
wavevector, q3Dz which defines the phase delay between
neighboring images of the 2D layer. If the images did
not interact at all, the phonon bands along q

3D
z would be

flat, and any choice would yield exactly the same result.
Coulomb interations, however, violate this condition.
For reasons that will become clear shortly, we shall set

q
3D
z = ⇡

L ), which corresponds the boundary of the super-
cell Brillouin zone along z. This means that the first-
order density is replicated with alternating signs along z,

nonanalytic
short-range
(local fields) !"#
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Here ⇢↵, the self-consistent charge response to a phonon
as calculated within the SR electrostatics, can be defined
as

⇢
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, (13)
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ext
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that the material-dependent response functions entering
the definition of �lr, are all analytic. This property is key
in the perspective of an e�cient representation of �lr, as
it allows for a long-wave expansion of both ⇢
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↵ and �sr in

a vicinity of the zone center. Typically, only few leading
terms need to be retained for an accurate description of
the long-range forces, and such quantities are straight-
forward to calculate within modern implementations of
density-functional perturbation theory (DFPT). [5, 32]

In the framework of DFPT, the main response func-
tions discussed in the above paragraphs (see Table I for
a summary) can be recast as the second-order variation
of the energy with respect to either two scalar poten-
tial perturbations (polarizability �), two phonons (force-
constants matrix �), or a scalar potential and a phonon
(charge response ⇢). The various “flavors” of each re-
sponse function (irreducible, screened, etc.) are then
determined by the type of self-consistent (SCF) kernel
that is used in the iterative solution of the linear-response
problem (right column in Table I). This is particularly
convenient, as it avoids the need for explicitly solving the
Dyson equations that govern dielectric screening at the
microscopic level. Moreover, DFPT methods allow for a
more straightforward incorporation of pseudopotentials,
which are awkward to treat in the context of the dielectric
matrix formalism [e.g., in Eq. (9) and (11) the first-order
nuclear potential is that of a point dipole, which implies
an all-electron framework].

In three dimensions, the above strategy has been car-
ried out first by Pick, Cohen and Martin in their seminal
work [3], by defining as ⌫lr theG = 0 part of the Coulomb
kernel in a vicinity of the zone center. Since the LR ker-
nel is defined by a single Fourier component, both �sr

and ⇢
sr
↵ are scalar functions of the wavevector q. At the

lowest order, we have

� = �q · �mac · q+ · · · , (15)

⇢↵ = �iq · Z↵ + · · · , (16)

where � and Z↵ are respectively the macroscopic di-
electric susceptibility and Born e↵ective charge tensors.
(The dots stand for higher multipolar orders that are usu-
ally neglected; a detailed discussion of their significance
can be found in Refs. 7 and 8.) We have then, by using
Eq. (8),

Wlr = (q · ✏ · q+ · · · )�1 (17)

which immediately leads, via Eq. (12), to the established
formula [3] for the dipole-dipole interaction. The remain-
der of this work will focus on how this technique can be
implemented in two dimensions, by providing an appro-
priate definition of ⌫lr in that case.

�lr
↵,0�(q) = [⇢↵(q)]

⇤ · [⌫�1
lr � �(q)]�1 · ⇢0�(q) (18)

�lr
↵,0� = ⇢
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↵ · (⌫�1
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B. Coulomb kernel in two dimensions
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In reciprocal space, the Coulomb kernel can be written

as

⌫(q, kz) =
4⇡

q2 + k2z

, (21)

where we have separated the total momentum into in-
plane (q) and out-of-plane (kz) components. We shall
write this in real space along z as a function of the in-
plane momentum q by using the following identity,

⌫(q, z) = 4⇡

Z
dkz

2⇡
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ikzz

q2 + k2z

= 2⇡
e
�q|z|

q
. (22) {yukawa}

This is the Green function for the Coulomb interactions
in open boundary conditions.
We shall now relate the above result to the Coulomb

kernel of a standard phonon calculation, as obtained
within the supercell approach. We shall assume a su-
percell of dimension L along the out-of-plane direction z,
where L is su�ciently large that the images interact only
electrostatically. Then, we shall consider a phonon prop-
agating in plane at a certain wavevector q = (qx, qy). At
this point, the three-dimensional nature of the supercell
requires us to choose the out-of-plane component of the
wavevector, q3Dz which defines the phase delay between
neighboring images of the 2D layer. If the images did
not interact at all, the phonon bands along q

3D
z would be

flat, and any choice would yield exactly the same result.
Coulomb interations, however, violate this condition.
For reasons that will become clear shortly, we shall set

q
3D
z = ⇡

L ), which corresponds the boundary of the super-
cell Brillouin zone along z. This means that the first-
order density is replicated with alternating signs along z,
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⇤2 (1)

Flexoelectricity, the polarization response of an in-
sulating material to a strain gradient, has sparked
widespread interest in the past few years as a viable
route towards novel electromechanical device concepts. [?
] Flexoelectricity is a close relative of piezoelectricity,
which describes the coupling between strain and polariza-
tion. Unlike the latter, which is present only in crystals
that break inversion symmetry, it is a universal prop-
erty of all insulators. A wealth of interesting functional-
ities and potential device applications have been demon-
strated over the years, including the possibility of rotat-
ing [? ] or switching [? ] the ferroelectric polariza-
tion by mechanical means, or of engineering a pseudo-
piezoelectric e↵ect. [? ] With the recent breakthroughs
in the fabrication of oxide membranes via sacrifical lay-
ers, [? ] the interest in flexoelectricity will likely increase
even faster than it has done to date, calling for reliable
theoretical models to support the experimental search.

Since the pioneering works of Resta [? ] and Hong et
al. [? ] in 2010, the first-principles theory of flexoelec-
tricity has made an impressive progress. [? ] As of early
2020, a complete calculation of the bulk flexoelectric ten-
sor can be carried out [? ] with the latest release of the
ABINIT [? ] package, which is now publicly available.
The calculation is inexpensive on a modern workstation:
It requires significantly less computational resources than
a calculation of the phonon band structure. The chal-
lenging part of the problem lies now on the user side: it
consists first in understanding what is being calculated,
and what is the physics behind it; second, in figuring out
how to use (or not to use) such information to build reli-
able models of the experimentally observed phenomena.
Illustrating these two points will be the main focus of my
talk.
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Flexoelectricity, the polarization response of an in-
sulating material to a strain gradient, has sparked
widespread interest in the past few years as a viable
route towards novel electromechanical device concepts. [?
] Flexoelectricity is a close relative of piezoelectricity,
which describes the coupling between strain and polariza-
tion. Unlike the latter, which is present only in crystals
that break inversion symmetry, it is a universal prop-
erty of all insulators. A wealth of interesting functional-
ities and potential device applications have been demon-
strated over the years, including the possibility of rotat-
ing [? ] or switching [? ] the ferroelectric polariza-
tion by mechanical means, or of engineering a pseudo-
piezoelectric e↵ect. [? ] With the recent breakthroughs
in the fabrication of oxide membranes via sacrifical lay-
ers, [? ] the interest in flexoelectricity will likely increase
even faster than it has done to date, calling for reliable
theoretical models to support the experimental search.

Since the pioneering works of Resta [? ] and Hong et
al. [? ] in 2010, the first-principles theory of flexoelec-
tricity has made an impressive progress. [? ] As of early
2020, a complete calculation of the bulk flexoelectric ten-
sor can be carried out [? ] with the latest release of the
ABINIT [? ] package, which is now publicly available.
The calculation is inexpensive on a modern workstation:
It requires significantly less computational resources than
a calculation of the phonon band structure. The chal-
lenging part of the problem lies now on the user side: it
consists first in understanding what is being calculated,
and what is the physics behind it; second, in figuring out
how to use (or not to use) such information to build reli-
able models of the experimentally observed phenomena.
Illustrating these two points will be the main focus of my
talk.
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where the NA superscript indicates that this quantity is
nonanalytic in q, because of the factor of P (q). It is a
straightforward excercise to show that

�̃q

↵,0� = �q

↵,0� + �q,NA
↵,0� . (134)

Such a partition of the force-constant matrix into an an-
alytic and a nonanalytic part corresponds precisely to
that of Ref. 32. [�q

↵,0� and �q,NA
↵,0� are, respectively,

C̄↵�
0(q, 1) and C̄↵�

0(q, 2) of Ref. 32.] Thus, our pre-
scription of removing the G = 0 in the self-consistent
electrostatic potential naturally yields the analytic part
of the force-constant matrix as defined by Pick, Cohen
and Martin32. The remainder, �q,NA

↵,0� , can be expressed
more conveniently as

�q,NA
↵,0� = 4⇡⌦

[⇢q↵]
⇤ ⇢q0�

⇠(q)
, (135)

Thus, similarly to the case of the electric field, the non-
analytic part of the force-constant matrix can be written,
in full generality, as the ratio of two analytic functions
of q, either of which can be expanded in a Taylor series.
We shall now push the Taylor expansion to higher orders
in q, including all terms that are potentially relevant in
the present theory of the flexoelectric response,

⌦⇢q↵ ⇠ � iq�Q
(1,�)
↵ �

q�q�
2

Q(2,��)
↵

+ i
q�q�q�

6
Q(3,���)

↵ +O(q4), (136)

⇠(q) ⇠ q↵q�✏↵� + q↵q�q�q�✏
(4)
↵��� +O(q6), (137)

where Q(1,�)
↵ = Z⇤

,↵� is again the Born dynamical charge
tensor. [In order to lighten the notation, we shall use the
following conventions henceforth,

(qq ·Q
⇤
)↵ = q�q�Q

(2,��)
↵

(qqq ·O
⇤
)↵ = q�q�q�Q

(3,���)
↵ ,

(qq · ✏(4) · qq) = q↵q�q�q�✏
(4)
↵���,

where the dynamic quadrupoles and octupoles are indi-
cated as Q⇤ and O⇤, respectively, in analogy with the dy-
namic dipoles Z⇤.] Note the absence of the zero-th order
term in the expansion of ⇢q (because of the requirement
of charge neutrality) and the absence of the odd terms
in the expansion of ⇠(q) (because of the requirement of
time-reversal symmetry – we assume that we are dealing
with a nonmagnetic insulator). At the leading order, we
recover the usual Cochran-Cowley formula,

�q,DD
↵,0� =

4⇡

⌦

(q · Z
⇤
)↵(q · Z

⇤
0)�

q · ✏ · q
, (138)

which invloves the well-known dipole-dipole (DD) inter-
actions. This term produces a long-ranged contribution
to the real-space interatomic force constants (IFC) that

decays as 1/d3 (with the interatomic distance d).34 The
next order in the expansion,

�q,DQ
↵,0� = �i

4⇡

2⌦

(q · Z
⇤
)↵(qq ·Q

⇤
0)�

q · ✏ · q

+i
4⇡

2⌦

(qq ·Q
⇤
)↵(q · Z

⇤
0)�

q · ✏ · q
, (139)

contains dipole-quadrupole (DQ) interaction terms. It is
easy to show that this contribution plays an important
role in piezoelectric materials, where it is responsible for
the boundary-dependent macroscopic electric fields that
arise upon deformation. Its contribution to the IFC de-
cays as 1/d4. Finally, we have three contributions, all
at the same order in q. First, the dipole-octupole (DO)
term,

�q,DO
↵,0� = �

4⇡

6⌦

(q · Z
⇤
)↵(qqq ·O

⇤
0)�

q · ✏ · q

�
4⇡

6⌦

(qqq ·O
⇤
)↵(q · Z

⇤
0)�

q · ✏ · q
, (140)

which can be related to the purely electronic flexoelectric
response (and, in particular, to the macroscopic electric
fields generated by the latter under open-circuit bound-
ary conditions). The second is a quadrupole-quadrupole
interaction,

�q,QQ
↵,0� =

4⇡

4⌦

(qq ·Q
⇤
)↵(qq ·Q

⇤
0)�

q · ✏ · q
, (141)

which has an impact [via the square brackets Eq. (38)]
on the elastic coe�cients (and hence on sound velocity)
in piezoelectric materials. The third term, of less obvious
physical interpretation, is due to the q-dispersion of the
macroscopic dielectric tensor, and reads

�q,D✏D
↵,0� = �

4⇡

⌦

(q · Z
⇤
)↵ (qq · ✏(4) · qq) (q · Z

⇤
0)�

(q · ✏ · q)2
,

(142)
Note that, in spite of being O(q2), this term is irrelevant
for both flexoelectricity and elasticity, as it vanishes upon
summation over one (or both) of the sublattice indices [as
required, e.g. in Eq. ((38))]. In summary, we have

�q,NA
↵,0� = �q,DD

↵,0� + �q,DQ
↵,0� + �q,DO

↵,0� +

�q,QQ
↵,0� + �q,D✏D

↵,0� +O(q3). (143)

The DD and DQ terms are nonanalytic at zero-th and
first-order in q, respectively; DO, QQ and D✏D are all
nonanalytic at the order q2. This formula describes the
long-range electrostatic interactions in an arbitrary in-
sulator up to the order 1/d5 (included), and constitutes
therefore a higher-order generalization of the well-known
Cochran-Cowley formula (DD only, valid up to 1/d3).
This completes our discussion of the nonanalytic be-

havior of � in a vicinity of the � point. Apart from
the direct interest to the study of electromechanical phe-
nomena, explicitly incorporating these terms in lattice-
dynamical studies may be instrumental to achieving an

Cochran & Cowley, Proc. R. Soc. Ser. A 276, 308 (1962) 
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sr
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Here ⇢↵, the self-consistent charge response to a phonon
as calculated within the SR electrostatics, can be defined
as

⇢
sr = (1 + �irWsr)⇢

ext
, (13)

or equivalently as

(1� �ir⌫sr)⇢
sr = ⇢

ext
. (14)

Crucially, ⇢sr↵ is an analytic function of q, which means
that the material-dependent response functions entering
the definition of �lr, are all analytic. This property is key
in the perspective of an e�cient representation of �lr, as
it allows for a long-wave expansion of both ⇢

sr
↵ and �sr in

a vicinity of the zone center. Typically, only few leading
terms need to be retained for an accurate description of
the long-range forces, and such quantities are straight-
forward to calculate within modern implementations of
density-functional perturbation theory (DFPT). [5, 32]

In the framework of DFPT, the main response func-
tions discussed in the above paragraphs (see Table I for
a summary) can be recast as the second-order variation
of the energy with respect to either two scalar poten-
tial perturbations (polarizability �), two phonons (force-
constants matrix �), or a scalar potential and a phonon
(charge response ⇢). The various “flavors” of each re-
sponse function (irreducible, screened, etc.) are then
determined by the type of self-consistent (SCF) kernel
that is used in the iterative solution of the linear-response
problem (right column in Table I). This is particularly
convenient, as it avoids the need for explicitly solving the
Dyson equations that govern dielectric screening at the
microscopic level. Moreover, DFPT methods allow for a
more straightforward incorporation of pseudopotentials,
which are awkward to treat in the context of the dielectric
matrix formalism [e.g., in Eq. (9) and (11) the first-order
nuclear potential is that of a point dipole, which implies
an all-electron framework].

In three dimensions, the above strategy has been car-
ried out first by Pick, Cohen and Martin in their seminal
work [3], by defining as ⌫lr theG = 0 part of the Coulomb
kernel in a vicinity of the zone center. Since the LR ker-
nel is defined by a single Fourier component, both �sr

and ⇢
sr
↵ are scalar functions of the wavevector q. At the

lowest order, we have

�sr = �q · � · q+ · · · , (15)

⇢↵ = �iq · Z↵ + · · · , (16)

where � and Z↵ are respectively the macroscopic di-
electric susceptibility and Born e↵ective charge tensors.
(The dots stand for higher multipolar orders that are usu-
ally neglected; a detailed discussion of their significance
can be found in Refs. 7 and 8.) We have then, by using
Eq. (8),

Wlr = (q · ✏ · q+ · · · )�1 (17)

which immediately leads, via Eq. (12), to the established
formula [3] for the dipole-dipole interaction. The remain-
der of this work will focus on how this technique can be
implemented in two dimensions, by providing an appro-
priate definition of ⌫lr in that case.

B. Coulomb kernel in two dimensions

{sec:kernel2d}
In reciprocal space, the Coulomb kernel can be written

as

⌫(q, kz) =
4⇡

q2 + k2z

, (18)

where we have separated the total momentum into in-
plane (q) and out-of-plane (kz) components. We shall
write this in real space along z as a function of the in-
plane momentum q by using the following identity,

⌫(q, z) = 4⇡

Z
dkz

2⇡

e
ikzz

q2 + k2z

= 2⇡
e
�q|z|

q
. (19) {yukawa}

This is the Green function for the Coulomb interactions
in open boundary conditions.
We shall now relate the above result to the Coulomb

kernel of a standard phonon calculation, as obtained
within the supercell approach. We shall assume a su-
percell of dimension L along the out-of-plane direction z,
where L is su�ciently large that the images interact only
electrostatically. Then, we shall consider a phonon prop-
agating in plane at a certain wavevector q = (qx, qy). At
this point, the three-dimensional nature of the supercell
requires us to choose the out-of-plane component of the
wavevector, q3Dz which defines the phase delay between
neighboring images of the 2D layer. If the images did
not interact at all, the phonon bands along q

3D
z would be

flat, and any choice would yield exactly the same result.
Coulomb interations, however, violate this condition.
For reasons that will become clear shortly, we shall set

q
3D
z = ⇡

L ), which corresponds the boundary of the super-
cell Brillouin zone along z. This means that the first-
order density is replicated with alternating signs along z,
which leads to the following Coulomb kernel

⌫
Z(q, z) =

X

n

(�1)n⌫(q, z � nL)

= ⌫(q, z) +�⌫
Z(q, z),

�⌫
Z(q, z) =

+1X

n=1

(�1)n [⌫(q, z � nL) + ⌫(q, z + nL)] .

(20) {decomp_nu}

The condition that the images interact only electrostat-
ically translates into the assumption that |z| < L, i.e.
that the interactions are relevant only within a small
portion of the supercell. This means that, for positive
n, z � nL < 0 and z + nL > 0. The additional piece in
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Here ⇢↵, the self-consistent charge response to a phonon
as calculated within the SR electrostatics, can be defined
as

⇢
sr = (1 + �irWsr)⇢
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, (13)

or equivalently as

(1� �ir⌫sr)⇢
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Crucially, ⇢sr↵ is an analytic function of q, which means
that the material-dependent response functions entering
the definition of �lr, are all analytic. This property is key
in the perspective of an e�cient representation of �lr, as
it allows for a long-wave expansion of both ⇢

sr
↵ and �sr in

a vicinity of the zone center. Typically, only few leading
terms need to be retained for an accurate description of
the long-range forces, and such quantities are straight-
forward to calculate within modern implementations of
density-functional perturbation theory (DFPT). [5, 32]

In the framework of DFPT, the main response func-
tions discussed in the above paragraphs (see Table I for
a summary) can be recast as the second-order variation
of the energy with respect to either two scalar poten-
tial perturbations (polarizability �), two phonons (force-
constants matrix �), or a scalar potential and a phonon
(charge response ⇢). The various “flavors” of each re-
sponse function (irreducible, screened, etc.) are then
determined by the type of self-consistent (SCF) kernel
that is used in the iterative solution of the linear-response
problem (right column in Table I). This is particularly
convenient, as it avoids the need for explicitly solving the
Dyson equations that govern dielectric screening at the
microscopic level. Moreover, DFPT methods allow for a
more straightforward incorporation of pseudopotentials,
which are awkward to treat in the context of the dielectric
matrix formalism [e.g., in Eq. (9) and (11) the first-order
nuclear potential is that of a point dipole, which implies
an all-electron framework].

In three dimensions, the above strategy has been car-
ried out first by Pick, Cohen and Martin in their seminal
work [3], by defining as ⌫lr theG = 0 part of the Coulomb
kernel in a vicinity of the zone center. Since the LR ker-
nel is defined by a single Fourier component, both �sr

and ⇢
sr
↵ are scalar functions of the wavevector q. At the

lowest order, we have

� = �q · �mac · q+ · · · , (15)

⇢↵ = �iq · Z↵ + · · · , (16)

where � and Z↵ are respectively the macroscopic di-
electric susceptibility and Born e↵ective charge tensors.
(The dots stand for higher multipolar orders that are usu-
ally neglected; a detailed discussion of their significance
can be found in Refs. 7 and 8.) We have then, by using
Eq. (8),

Wlr = (q · ✏ · q+ · · · )�1 (17)

which immediately leads, via Eq. (12), to the established
formula [3] for the dipole-dipole interaction. The remain-
der of this work will focus on how this technique can be
implemented in two dimensions, by providing an appro-
priate definition of ⌫lr in that case.
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lr ��(q))�1 ·⇢0�(q) (18)

B. Coulomb kernel in two dimensions

{sec:kernel2d}
In reciprocal space, the Coulomb kernel can be written

as

⌫(q, kz) =
4⇡

q2 + k2z

, (19)

where we have separated the total momentum into in-
plane (q) and out-of-plane (kz) components. We shall
write this in real space along z as a function of the in-
plane momentum q by using the following identity,

⌫(q, z) = 4⇡

Z
dkz

2⇡

e
ikzz

q2 + k2z

= 2⇡
e
�q|z|

q
. (20) {yukawa}

This is the Green function for the Coulomb interactions
in open boundary conditions.
We shall now relate the above result to the Coulomb

kernel of a standard phonon calculation, as obtained
within the supercell approach. We shall assume a su-
percell of dimension L along the out-of-plane direction z,
where L is su�ciently large that the images interact only
electrostatically. Then, we shall consider a phonon prop-
agating in plane at a certain wavevector q = (qx, qy). At
this point, the three-dimensional nature of the supercell
requires us to choose the out-of-plane component of the
wavevector, q3Dz which defines the phase delay between
neighboring images of the 2D layer. If the images did
not interact at all, the phonon bands along q

3D
z would be

flat, and any choice would yield exactly the same result.
Coulomb interations, however, violate this condition.
For reasons that will become clear shortly, we shall set

q
3D
z = ⇡

L ), which corresponds the boundary of the super-
cell Brillouin zone along z. This means that the first-
order density is replicated with alternating signs along z,
which leads to the following Coulomb kernel

⌫
Z(q, z) =

X

n

(�1)n⌫(q, z � nL)

= ⌫(q, z) +�⌫
Z(q, z),

�⌫
Z(q, z) =

+1X

n=1

(�1)n [⌫(q, z � nL) + ⌫(q, z + nL)] .

(21) {decomp_nu}

The condition that the images interact only electrostat-
ically translates into the assumption that |z| < L, i.e.
that the interactions are relevant only within a small

Ø Both !"# and $sr are analytic functions of q: can expand to lowest orders

Born dynamical charges macroscopic dielectric susceptibility

1. Direct approach (exact)

2. Traditional Fourier-interpolation approach (approximate)

Ø Need to implement modified “sr”electrostatic kernel & scalar potential perturbation
Ø Could be useful for accurate IFC’s and e-ph matrix elements in “difficult cases”… 



Higher orders: dynamical quadrupoles

Ø Calculation of quadrupoles via long-wave DFPT, available in ABINIT v9.0
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Here ⇢↵, the self-consistent charge response to a phonon
as calculated within the SR electrostatics, can be defined
as

⇢
sr = (1 + �irWsr)⇢
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, (13)

or equivalently as

(1� �ir⌫sr)⇢
sr = ⇢

ext
. (14)

Crucially, ⇢sr↵ is an analytic function of q, which means
that the material-dependent response functions entering
the definition of �lr, are all analytic. This property is key
in the perspective of an e�cient representation of �lr, as
it allows for a long-wave expansion of both ⇢

sr
↵ and �sr in

a vicinity of the zone center. Typically, only few leading
terms need to be retained for an accurate description of
the long-range forces, and such quantities are straight-
forward to calculate within modern implementations of
density-functional perturbation theory (DFPT). [5, 32]

In the framework of DFPT, the main response func-
tions discussed in the above paragraphs (see Table I for
a summary) can be recast as the second-order variation
of the energy with respect to either two scalar poten-
tial perturbations (polarizability �), two phonons (force-
constants matrix �), or a scalar potential and a phonon
(charge response ⇢). The various “flavors” of each re-
sponse function (irreducible, screened, etc.) are then
determined by the type of self-consistent (SCF) kernel
that is used in the iterative solution of the linear-response
problem (right column in Table I). This is particularly
convenient, as it avoids the need for explicitly solving the
Dyson equations that govern dielectric screening at the
microscopic level. Moreover, DFPT methods allow for a
more straightforward incorporation of pseudopotentials,
which are awkward to treat in the context of the dielectric
matrix formalism [e.g., in Eq. (9) and (11) the first-order
nuclear potential is that of a point dipole, which implies
an all-electron framework].

In three dimensions, the above strategy has been car-
ried out first by Pick, Cohen and Martin in their seminal
work [3], by defining as ⌫lr theG = 0 part of the Coulomb
kernel in a vicinity of the zone center. Since the LR ker-
nel is defined by a single Fourier component, both �sr

and ⇢
sr
↵ are scalar functions of the wavevector q. At the

lowest order, we have

� = �q · �mac · q+ · · · , (15)

⇢↵ = �iq · Z↵ + · · · , (16)

⇢↵ = �iq · Z↵ � q�q�

2
Q

(��)
↵ + · · · (17)

where � and Z↵ are respectively the macroscopic di-
electric susceptibility and Born e↵ective charge tensors.

(The dots stand for higher multipolar orders that are usu-
ally neglected; a detailed discussion of their significance
can be found in Refs. 7 and 8.) We have then, by using
Eq. (8),

Wlr = (q · ✏ · q+ · · · )�1 (18)

which immediately leads, via Eq. (12), to the established
formula [3] for the dipole-dipole interaction. The remain-
der of this work will focus on how this technique can be
implemented in two dimensions, by providing an appro-
priate definition of ⌫lr in that case.
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B. Coulomb kernel in two dimensions

{sec:kernel2d}
In reciprocal space, the Coulomb kernel can be written

as

⌫(q, kz) =
4⇡

q2 + k2z

, (22)

where we have separated the total momentum into in-
plane (q) and out-of-plane (kz) components. We shall
write this in real space along z as a function of the in-
plane momentum q by using the following identity,

⌫(q, z) = 4⇡

Z
dkz

2⇡

e
ikzz

q2 + k2z

= 2⇡
e
�q|z|

q
. (23) {yukawa}

This is the Green function for the Coulomb interactions
in open boundary conditions.
We shall now relate the above result to the Coulomb

kernel of a standard phonon calculation, as obtained
within the supercell approach. We shall assume a su-
percell of dimension L along the out-of-plane direction z,
where L is su�ciently large that the images interact only
electrostatically. Then, we shall consider a phonon prop-
agating in plane at a certain wavevector q = (qx, qy). At
this point, the three-dimensional nature of the supercell
requires us to choose the out-of-plane component of the
wavevector, q3Dz which defines the phase delay between
neighboring images of the 2D layer. If the images did
not interact at all, the phonon bands along q

3D
z would be

DQ interaction ≈d-4

M. Royo and M. Stengel, Phys. Rev. X 9, 021050 (2019)

Ø Relationship to Martin’s theory of piezoelectricity (PRB 1972)

clamped-ion piezo tensor

likely to be important for phonon
interpolation in piezoelectrics…
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FIG. 5.
scr02
Imaginary part of the screened charge divided by

q, ⇢scr(q)/q, as calculated from first principles (thick black)
or via the electrostatic model, depending on the parameter
L. Solid red stops the expansion of the charge at the dipolar
level, dashed green includes octupoles.

following formula,

⇢
k
↵(q) =

Z

cell
d
3
r⇢

q
↵(r) cosh(qz). (57) {rho_scr}

⇢
k
↵ =

@
2
E

@'k@⌧↵
(58)

ē↵�� + ē��↵ =
1

⌦

X



Q
(↵�)
� (59)

(This yields the screened charge; the same formula holds
for its short-range counterpart, calculated within the Z-
branch kernel.) Since we have already tested our imple-
mentation (see Fig. 3), we shall assume that the following
relationship holds for the screened charge,

⇢↵(q) =
⇢
sr
↵(q)

1� 2⇡f(q)
q �sr(q)

. (60)

In the following we shall check the agreement between the
“exact” screened charge, extracted via Eq. (57) along a
given segment in reciprocal space, and the approximate
model based on dynamical multipoles and macroscopic
polarizability. To gain further insight, we shall also ex-
tract the dynamical octupoles by fitting the calculated
⇢
sr
↵(q) to third order in q.
The octupoles, unlike dipoles and quadrupoles, linearly

depend on the parameter L (see Appendix C for details).
If at a given L their magnitude is small, the error that
one makes by discarding them is also small, and there-
fore they can be regarded as yet another indicator of the
quality of the electrostatic model.

In Fig. 5 we analyze the imaginary part of the charge
response to a longitudinal phonon, either B or N and
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1 1.5

L=2.0 L=4.5

FIG. 6.
decay
Decay (log-log plot) of the in-plane B-B force con-

stants in real space as a function of the interatomic distance.
Left: L = 2; right: L = 4.5. Black circles correspond to
the force constants as calculated on a 16⇥ 16 supercell. Red
squares correspond to the dipolar model; green diamonds in-
clude the treatment of dynamical quadrupoles. Inset: out-of-
plane force constants.

compare it to the approximate formula. Note that the
plots show Im[⇢scr(q)/q], and therefore the q = 0 limit
corresponds to minus the in-plane dynamical charge,
since ⇢(q) ⇠ �iqZ

⇤. The results nicely confirm the ob-
servations of the previous paragraph: The agreement
between the first-principles results and the multipolar
model is clearly superior when we set L = 4.5 bohr. By
looking just at the red curves, one might be swayed into
thinking that L = 2 is equally good as L = 4.5; the
octupolar contribution, however, is large and leads to a
substantially worse match at intermediate values of q.
For L = 10 the agreement seriously deteriorates, even
at the dipolar level; the huge octupolar term points to a
clear failure of the multipolar expansion in this case. In-
deed, the octupolar term is small at L = 4.5, and rapidly
grows in importance as L is either increased or decreased
(see Tab. III).

This analysis carries an important message: the choice
of L that yields the best description of the polarizabil-
ity also optimizes the multipolar representation of the
screened charge. Note that the screened charge is by
itself an important physical quantity, as it immediately
lends to a definition of the long-range scattering potential
via

V
scr(q) =

2⇡f(q)

q
⇢↵(q). (61)

The latter is a key ingredient in the calculation of
electron-phonon matrix elements; thus, we believe that
the formalism developed here may be beneficial in the
theoretical study of electron mobilities and related quan-
tities in 2D semiconductors. Exploring this topic, e.g. by
following the guidelines of Refs. 43–46, will be an exciting
avenue for further research.



Numerical results: rhombohedral BaTiO3

Royo, Hahn and Stengel, PRL 125, 217602 (2020)

4×4×4 q-point mesh

STANDARD DD APPROACH HIGHER-ORDER APPROACH

Ø Spurious imaginary frequencies disappear
Ø Converged sound velocities already at 4x4x4
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!3# structure, $ ∥ (111)
ferroelectric & piezoelectric



Can we do the same in 2D?
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Ø Fields are only modulated along
the longitudinal direction

Ø Extreme anisotropy (extended in plane, 
microscopic out of plane), nonuniform fields
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Ø Phenomenological treatment: 
Cochran & Cowley, PRSS A 276, 308 (1962)

Ø Fundamental theory:                
Pick, Cohen & Martin, PRB 1, 910 (1970)

Ø First principles + 2D dielectric model: 
Sohier et al., Nano Lett. 17, 3758 (2017)

Ø Fundamental theory still missing



2D phonons in a 3D code
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“Coulomb cutoff” method

Unclear how to split between “sr” and “lr” 
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Here the indices ↵� run over the two in-plane compo-
nents; the relation to Eq. (42) in the anisotropic case
is ↵k = q̂ · ↵ · q̂. Note that all the barred quantities

(except for the in-plane components of Z̄(↵)
� ) depend on

the supercell size L. Conversely, the new quantities are
all independent of the vacuum thickness (provided that
the electron density of neighboring images has negligible
overlap), as required for well-defined materials proper-
ties. The above results are consistent with the prescrip-
tions of Refs. [11, 12, 56], and even if our work puts them
on firmer theoretical grounds, they are not new.

Devising the “conversion rules” for the dynamical
quadrupoles is slightly more delicate, as di↵erent com-
ponents mix up in a way that is not always intuitive.
Regarding the the out-of-plane and mixed components,
one has

Q
?q̂ =

X

↵

q̂↵
Q̄

(z↵) + ⌧zZ̄
(↵)

✏̄zz
, (A5a)

Q
?? =

Q̄
(zz) + 2⌧zZ̄?

✏̄zz
. (A5b)

The dielectric constant at the denominator relates to the
EBC change, analogously to the above discussion of the
Born e↵ective charges. The addition of the Born e↵ec-
tive charge times the z coordinate of the atom at the
numerator, on the other hand, takes care of the origin
shift. Indeed, the dynamical quadrupoles within DFPT
can be written as a second moment of the charge density
induced by an atomic displacement as [7]

Q
(↵�)
� =

Z
d
3
r ⇢�(r) (r� ⌧)↵(r� ⌧)� . (A6)

One can then break down the z-components of the round
brackets as

(r� ⌧)z = z � ⌧z, (A7)

and after recalling that the Born charge can also be de-
fined as a real-space moment,

Z
(↵)
� =

Z
d
3
r ⇢�(r) (r� ⌧)↵, (A8)

one quickly arrives at Eq. (A5). We are only left with
working out the in-plane components, which can be read-
ily converted as

Q
(↵�) = Q̄

(↵�) � 4⇡�↵�Q
??

, (A9)

where �↵� are the in-plane components of the macro-
scopic dielectric susceptibility tensor of the supercell.
Equivalently, one can directly define the e↵ective in-plane
quadrupole as

Q̂
(↵�) = Q̄

(↵�) � ✏↵�Q
??

. (A10)

One can show that the resulting values are all inde-
pendent of the vacuum thickness, L, unlike the original
barred quantities.

Appendix B: Relationship to the Coulomb cuto↵
technique

The implementation of the Coulomb cuto↵ technique
follows the prescriptions of Refs. 9, 11, and 34, and con-
sists in writing the open-boundary Coulomb kernel as

⌫(Kk, Gn) =
4⇡

K2
k +G2

n

⇥
1� e

�KkL cos(GnL)
⇤
, (B1)

where Kk = Gk+q is an in-plane reciprocal-space vector
(Gk spans the Bravais lattice of the primitive 2D cell);
Gn form a discrete mesh along z and L = Lsc/2 is set
to half the supercell length in the out-of-plane direction.
After observing that Gn = ⇡n

L , we immediately obtain
the following expression for the macroscopicGk = 0 com-
ponent,

⌫(q, Gn) =
4⇡

q2 +G2
n

[1� (�1)ne�qL]. (B2)

To link these expressions to the arguments of the pre-
vious Section, we shall rewrite the prefactor in the square
brackets as follows,

[1� (�1)ne�qL] = [1� (�1)n] + (�1)n(1� e
�qL) (B3)

It is easy to see that the first term on the rhs corresponds
to the short-range “Z-branch” electrostatics,

⌫sr(q, Gn) =
4⇡

q2 +G2
n

[1� (�1)n]. (B4)

Indeed, the [1 � (�1)n] prefactor can be regarded as an
implementation of the image-charge method illustrated
in Fig. 1. (Incidentally, this latter observation reveals
that the Coulomb cuto↵ technique can also be interpreted
as an image-charge method: it only di↵ers from ⌫sr in the
prefactor e

�qL that scales the negative images, located
at odd multiples of L from the z = 0 plane.) Then,
we identify the long-range part of the kernel with the
remainder,

⌫lr(q, Gn) = 4⇡
(�1)n

q2 +G2
n

(1� e
�qL). (B5)

To verify that Eq.(B5) is consistent with the formalism
of the earlier sections, recall the following relation for the
Fourier series of the hyperbolic cosine function,

Z ⇡

�⇡
cosh(ax) cos(nx)dx = (�1)n

2a sinh(a⇡)

a2 + n2
. (B6)

By changing the variable to z = Lx/⇡, and by setting
q = a⇡

L , we have

Z L

�L
cosh(qz) cos(Gnz)dz = (�1)n

2q sinh(qL)

q2 +G2
n

. (B7)

Then, observe that

sinh(qL)


1� tanh

✓
qL

2

◆�
= (1� e

�qL). (B8)

reciprocal-space representation (!"= out-of-plane component)

nonanalytic at any !"

#(%, %') = *
|% ,%-| for   . − .' < 1

2 ,   = 0 otherwise

Ø Eliminates cross-talk between images
S. Ismail-Beigi, PRB 73, 233103 (2006); C. A. Rozzi et al., PRB 73, 205119 (2006).

Ø Works nicely for the DFPT calculations, but how about the long-range forces? 

Ø Application to the phonon problem
T. Sohier, M. Calandra, and F. Mauri, Phys. Rev. B 94, 085415 (2016)
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n, z � nL < 0 and z + nL > 0. The additional piece in
the Coulomb kernel is therefore written as

�⌫
Z(q, z) =

2⇡

q
(eqz + e

�qz)
+1X

n=1

(�1)ne�qnL

= �4⇡

q
cosh(qz)

e
�qL

1 + e�qL
,

(21)

where we have used the following formula for the geomet-
ric power series, converging for |x| < 1,

1

1� x
= 1 + x+ x

2 + x
3 + · · ·

Eq. (21) provides what we need to remove from the
Coulomb kernel of a zone-boundary phonon to obtain
open boundary conditions. One might wonder why we
haven’t chosen phonons of the type q

3D
z = 0 (�-like) as

a starting point, which seems the most natural choice.
In this case, by following the same steps we obtain an
analogous result,

�⌫
�(q, z) =

4⇡

q
cosh(qz)

e
�qL

1� e�qL
. (22)

This doesn’t look much unlike the above – but has, in
fact, a crucial di↵erence: the divergence near q = 0 is
much stronger in the latter case,

�⌫
Z(q ! 0, z) ' �2⇡

q
,

�⌫
�(q ! 0, z) ' 4⇡

Lq2
,

(23)

where the second result is obtained by observing that
e
�qL ⇠ 1 + qL + . . .. This has important implications
for the physics: for example, the phonon frequencies at
the center of the 2D Brillouin zone are correctly repro-
duced [33] by using q

3D
z = ⇡

L ; conversely, by taking q ! 0
limit along the �-branch one generally obtains a spuri-
ous LO–TO splitting between the longitudinal (LO) and
transverse (TO) optic modes, which is incorrect. [12]

Most importantly, unlike the �-branch case, the re-
sponse calculated along the Z-branch is always an ana-
lytic function of (qx, qy). (The branch does not intersect
the � point of the supercell Brillouin zone, so it is immune
from the usual troubles with the macroscopic Coulomb
fields.) This means that the interactions decay exponen-
tially with distance. Thus, the long-range interatomic
forces must all be contained in �⌫

Z(q, z), which is man-
ifestly nonanalytic. Based on these considerations, we
shall choose the Z-branch electrostatics as our definition
of the short-range Coulomb kernel in two dimensions,

⌫sr = ⌫
Z
, ⌫lr = ��⌫

Z
. (24)

To elaborate on this point further, we can equivalently
express the long-range part of the kernel as

⌫lr(q, z) =
2⇡f(q)

q
cosh(qz) (25)

+

+ +
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FIG. 1. Real-space representation of the long-range Coulomb
kernel as defined in the text. The curves correspond to the
choices L = 5 a.u. (black), L = 10 a.u. (red) and L =
20 a.u. (green). The Coulomb potential 1/r is shown as a
dashed curve for comparison. The inset provides an intuitive
illustration of the decomposition of Eq. (20) as an image-
charge method.

where we have introduced the L-dependent envelope
function

f(q) = 1� tanh

✓
qL

2

◆
. (26)

Since L is to a large extent arbitrary, the dependence
of ⌫lr(q, z) on this parameter might look worrisome at
first sight. However, one can easily show that such de-
pendence boils down to an analytic function of q [the
function tanh(qL/2)/q is regular at q = 0], which is ir-
relevant to our scopes. In other words, the nonanalytic
properties of ⌫lr(q, z) are the same regardless of the value
of L, and therefore provide a formally sound representa-
tion of the long-range Coulomb interactions in 2D. That
⌫lr(q, z) is only defined modulo an analytic function of
q reflects the well-known arbitrariness in the separation
between analytic and nonanalytic contributions to the
Coulomb kernel, which also concerns the 3D case.
As an illustration of the above arguments, we show

in Fig. 1 a real-space representation of the long-range
Coulomb kernel, which we have calculated by Fourier
transforming the ⌫lr(q, z) function for z = 0. (This is
relevant for the interaction between two point charges lo-
cated in the z = 0 plane.) The function is regular at the
origin, and rapidly converges to the Coulomb potential
1/r for r � L, confirming our arguments that the long-
range forces are correctly reproduced at any L. The inset
of Fig. 1 shows a simple interpretation of what we have
done so far in the language of the image-charge method.
The Coulombic 1/r potential of an isolated point charge
(⌫) is decomposed into the potential generated by a linear
array of point charges (⌫sr), spaced by L and with alter-
nating signs, plus the potential generated by the images,
taken with opposite sign (⌫lr). In Appendix B we cor-
roborate the above points by establishing a formal link

Ø Idea: replace the bare charge with a vertical array of images, taken with alternating signs
Ø Interaction between columns is short-ranged, we put the remainder into !"#
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to the Coulomb cuto↵ approach [34] – the latter can be
conveniently regarded as an image-charge method as well.

This interpretation clarifies the physical meaning of
the prefactor f(q), which makes ⌫lr(q, z) vanish expo-
nentially for su�ciently large values of q. Indeed, for a
charge modulation of wavevector q � 1/L the images
do not “see” eachother, as the stray fields decay faster
than the vacuum thickness. In such a regime, the Z-
branch electrostatics coincides with the correct one and
⌫lr, which is defined as the di↵erence, vanishes. Also, it is
interesting to note that ⌫lr depends on z only via the hy-
perbolic cosine function. This latter property naturally
leads to a multipolar expansion of the interactions, as we
shall see shortly. Before that, we shall combine the above
results with the formalism of Sec. II A to introduce the
e↵ects of dielectric screening via the polarizability of the
isolated 2D crystal.

C. Treatment of screening

{sec:screen2d}
By using the bisection formula

cosh(x� y) = cosh(x) cosh(y)� sinh(x) sinh(y),

one can write the long-range part of the Coulomb kernel
in the following form

⌫lr(q, z � z
0) =

2⇡f(q)

q
'(z) ·

✓
1 0
0 �1

◆
·'(z0), (27)

where the functional dependence on the real-space coor-
dinates is all contained in

'(z) =


cosh(qz)
sinh(qz)

�
. (28)

This provides the bare (unscreened) Coulomb interaction
between charge densities, whose key property is the strict
separation between interactions that are inversion-even
and those that are inversion-odd with respect to the z = 0
plane.
Recall that the long-range part of the force-constant

matrix includes screening in the form

�lr
↵,0� = ⇢

sr
↵ · (⌫�1

lr � �sr)
�1 · ⇢sr0� . (29) {philr0}

By treating screening as a perturbation of the bare kernel,
we can formally expand the inverse as

(⌫�1 � �)�1 = ⌫ + ⌫�⌫ + ⌫�⌫�⌫ + · · · (30)

Now, note that the bare kernel always appears between
two charge-density response functions (either ⇢ or �),
which naturally leads to the following representation of
the SR polarizability (S is the cell surface),

�
(lm)
sr (q) =

1

S

Z

cell
d
3
r

Z
d
3
r
0
Al(z)�sr(q, r, r

0)Am(z0).

(31)
and the first-order charge density response to a phonon,

⇢
sr,(m)
↵ (q) =

Z

cell
d
3
r ⇢

sr
↵(q, r)Am(z). (32)

where the components “1” and “2” refer to the hyperbolic
cosine and sine, respectively.
This way, the electrostatic screening problem is re-

duced to elementary linear algebra involving square ma-
trices and vectors of dimension 2, which can be solved
with paper and pencil in the most general case. Most
importantly, if the 2D crystal enjoys a mirror plane at
z = 0, as it is frequently the case for the most common
materials being studied, the polarizability matrix is also
diagonal, just like the bare Coulomb kernel. This means
that the in-plane and out-of-plane electrostatics is decou-
pled by symmetry, and either of them can be treated by
two separate scalar problems. In particular, we have

�lr
↵,0�(q) =

2⇡f(q)

Sq

 
[⇢k↵(q)]⇤ ⇢

k
0�(q)

✏k(q)
�

[⇢?↵(q)]
⇤
⇢
?
0�(q)

✏?(q)

!
, (33) {scr_all}

where we have indicated as k and ? the inversion-even
and inversion-odd components of ⇢sr, and

✏k(q) = 1� 2⇡f(q)

q
�
k
sr(q), (34)

✏?(q) = 1 +
2⇡f(q)

q
�
?
sr(q), (35)

are the corresponding dielectric functions. (Recall that
✏ = 1��⌫, and relates to the screened Coulomb interac-
tion via W = ⌫✏

�1.)

Eq. (33) is one of the main formal results of this work.
Knowledge of the analytical functions ⇢sr(q), �sr(q) and
�sr(q) allows one to reconstruct the exact dynamical ma-
trix in open-boundary conditions by combining Eq. (33)
with Eq. (10). In other words, adding Eq. (33) to �sr(q) a
posteriori yields results that are in all respects equivalent
to the use a priori of, e.g., the Coulomb cuto↵ technique
within the self-consistent calculation of �. Most impor-
tantly, Eq. (33) provides an exact reference that can be
used to build approximated models of the long-range in-
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n, z � nL < 0 and z + nL > 0. The additional piece in
the Coulomb kernel is therefore written as

�⌫
Z(q, z) =

2⇡

q
(eqz + e

�qz)
+1X

n=1

(�1)ne�qnL

= �4⇡

q
cosh(qz)

e
�qL

1 + e�qL
,

(21)

where we have used the following formula for the geomet-
ric power series, converging for |x| < 1,

1

1� x
= 1 + x+ x

2 + x
3 + · · ·

Eq. (21) provides what we need to remove from the
Coulomb kernel of a zone-boundary phonon to obtain
open boundary conditions. One might wonder why we
haven’t chosen phonons of the type q

3D
z = 0 (�-like) as

a starting point, which seems the most natural choice.
In this case, by following the same steps we obtain an
analogous result,

�⌫
�(q, z) =

4⇡

q
cosh(qz)

e
�qL

1� e�qL
. (22)

This doesn’t look much unlike the above – but has, in
fact, a crucial di↵erence: the divergence near q = 0 is
much stronger in the latter case,

�⌫
Z(q ! 0, z) ' �2⇡

q
,

�⌫
�(q ! 0, z) ' 4⇡

Lq2
,

(23)

where the second result is obtained by observing that
e
�qL ⇠ 1 + qL + . . .. This has important implications
for the physics: for example, the phonon frequencies at
the center of the 2D Brillouin zone are correctly repro-
duced [33] by using q

3D
z = ⇡

L ; conversely, by taking q ! 0
limit along the �-branch one generally obtains a spuri-
ous LO–TO splitting between the longitudinal (LO) and
transverse (TO) optic modes, which is incorrect. [12]

Most importantly, unlike the �-branch case, the re-
sponse calculated along the Z-branch is always an ana-
lytic function of (qx, qy). (The branch does not intersect
the � point of the supercell Brillouin zone, so it is immune
from the usual troubles with the macroscopic Coulomb
fields.) This means that the interactions decay exponen-
tially with distance. Thus, the long-range interatomic
forces must all be contained in �⌫

Z(q, z), which is man-
ifestly nonanalytic. Based on these considerations, we
shall choose the Z-branch electrostatics as our definition
of the short-range Coulomb kernel in two dimensions,

⌫sr = ⌫
Z
, ⌫lr = ��⌫

Z
. (24)

To elaborate on this point further, we can equivalently
express the long-range part of the kernel as

⌫lr(q, z) =
2⇡f(q)

q
cosh(qz) (25)
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FIG. 1. Real-space representation of the long-range Coulomb
kernel as defined in the text. The curves correspond to the
choices L = 5 a.u. (black), L = 10 a.u. (red) and L =
20 a.u. (green). The Coulomb potential 1/r is shown as a
dashed curve for comparison. The inset provides an intuitive
illustration of the decomposition of Eq. (20) as an image-
charge method.

where we have introduced the L-dependent envelope
function

f(q) = 1� tanh

✓
qL

2

◆
. (26)

Since L is to a large extent arbitrary, the dependence
of ⌫lr(q, z) on this parameter might look worrisome at
first sight. However, one can easily show that such de-
pendence boils down to an analytic function of q [the
function tanh(qL/2)/q is regular at q = 0], which is ir-
relevant to our scopes. In other words, the nonanalytic
properties of ⌫lr(q, z) are the same regardless of the value
of L, and therefore provide a formally sound representa-
tion of the long-range Coulomb interactions in 2D. That
⌫lr(q, z) is only defined modulo an analytic function of
q reflects the well-known arbitrariness in the separation
between analytic and nonanalytic contributions to the
Coulomb kernel, which also concerns the 3D case.
As an illustration of the above arguments, we show

in Fig. 1 a real-space representation of the long-range
Coulomb kernel, which we have calculated by Fourier
transforming the ⌫lr(q, z) function for z = 0. (This is
relevant for the interaction between two point charges lo-
cated in the z = 0 plane.) The function is regular at the
origin, and rapidly converges to the Coulomb potential
1/r for r � L, confirming our arguments that the long-
range forces are correctly reproduced at any L. The inset
of Fig. 1 shows a simple interpretation of what we have
done so far in the language of the image-charge method.
The Coulombic 1/r potential of an isolated point charge
(⌫) is decomposed into the potential generated by a linear
array of point charges (⌫sr), spaced by L and with alter-
nating signs, plus the potential generated by the images,
taken with opposite sign (⌫lr). In Appendix B we cor-
roborate the above points by establishing a formal link

range separation function,
vanishes for # ≫ %&'
(% = “Ewald parameter”)
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to the Coulomb cuto↵ approach [34] – the latter can be
conveniently regarded as an image-charge method as well.

This interpretation clarifies the physical meaning of
the prefactor f(q), which makes ⌫lr(q, z) vanish expo-
nentially for su�ciently large values of q. Indeed, for a
charge modulation of wavevector q � 1/L the images
do not “see” eachother, as the stray fields decay faster
than the vacuum thickness. In such a regime, the Z-
branch electrostatics coincides with the correct one and
⌫lr, which is defined as the di↵erence, vanishes. Also, it is
interesting to note that ⌫lr depends on z only via the hy-
perbolic cosine function. This latter property naturally
leads to a multipolar expansion of the interactions, as we
shall see shortly. Before that, we shall combine the above
results with the formalism of Sec. II A to introduce the
e↵ects of dielectric screening via the polarizability of the
isolated 2D crystal.

C. Treatment of screening

{sec:screen2d}
By using the bisection formula

cosh(x� y) = cosh(x) cosh(y)� sinh(x) sinh(y),

one can write the long-range part of the Coulomb kernel
in the following form

⌫lr(q, z � z
0) =

2⇡f(q)

q
'(z) ·

✓
1 0
0 �1

◆
·'(z0), (27)

where the functional dependence on the real-space coor-
dinates is all contained in

'(z) =


cosh(qz)
sinh(qz)

�
. (28)

This provides the bare (unscreened) Coulomb interaction
between charge densities, whose key property is the strict
separation between interactions that are inversion-even
and those that are inversion-odd with respect to the z = 0
plane.
Recall that the long-range part of the force-constant

matrix includes screening in the form

�lr
↵,0� = ⇢

sr
↵ · (⌫�1

lr � �sr)
�1 · ⇢sr0� . (29) {philr0}

By treating screening as a perturbation of the bare kernel,
we can formally expand the inverse as

(⌫�1 � �)�1 = ⌫ + ⌫�⌫ + ⌫�⌫�⌫ + · · · (30)

Now, note that the bare kernel always appears between
two charge-density response functions (either ⇢ or �),
which naturally leads to the following representation of
the SR polarizability (S is the cell surface),

�
(lm)
sr (q) =

1

S

Z

cell
d
3
r

Z
d
3
r
0
Al(z)�sr(q, r, r

0)Am(z0).

(31)
and the first-order charge density response to a phonon,

⇢
sr,(m)
↵ (q) =

Z

cell
d
3
r ⇢

sr
↵(q, r)Am(z). (32)

where the components “1” and “2” refer to the hyperbolic
cosine and sine, respectively.
This way, the electrostatic screening problem is re-

duced to elementary linear algebra involving square ma-
trices and vectors of dimension 2, which can be solved
with paper and pencil in the most general case. Most
importantly, if the 2D crystal enjoys a mirror plane at
z = 0, as it is frequently the case for the most common
materials being studied, the polarizability matrix is also
diagonal, just like the bare Coulomb kernel. This means
that the in-plane and out-of-plane electrostatics is decou-
pled by symmetry, and either of them can be treated by
two separate scalar problems. In particular, we have

�lr
↵,0�(q) =

2⇡f(q)

Sq

 
[⇢k↵(q)]⇤ ⇢

k
0�(q)

✏k(q)
�

[⇢?↵(q)]
⇤
⇢
?
0�(q)

✏?(q)

!
, (33) {scr_all}

where we have indicated as k and ? the inversion-even
and inversion-odd components of ⇢sr, and

✏k(q) = 1� 2⇡f(q)

q
�
k
sr(q), (34)

✏?(q) = 1 +
2⇡f(q)

q
�
?
sr(q), (35)

are the corresponding dielectric functions. (Recall that
✏ = 1��⌫, and relates to the screened Coulomb interac-
tion via W = ⌫✏

�1.)

Eq. (33) is one of the main formal results of this work.
Knowledge of the analytical functions ⇢sr(q), �sr(q) and
�sr(q) allows one to reconstruct the exact dynamical ma-
trix in open-boundary conditions by combining Eq. (33)
with Eq. (10). In other words, adding Eq. (33) to �sr(q) a
posteriori yields results that are in all respects equivalent
to the use a priori of, e.g., the Coulomb cuto↵ technique
within the self-consistent calculation of �. Most impor-
tantly, Eq. (33) provides an exact reference that can be
used to build approximated models of the long-range in-

(bisection formula)
2D “scalar potential” perturbation,

nonuniform along (

5

of L, and therefore provide a formally sound representa-
tion of the long-range Coulomb interactions in 2D. That
⌫lr(q, z) is only defined modulo an analytic function of
q reflects the well-known arbitrariness in the separation
between analytic and nonanalytic contributions to the
Coulomb kernel, which also concerns the 3D case.

As an illustration of the above arguments, we show
in Fig. 1 a real-space representation of the long-range
Coulomb kernel, which we have calculated by Fourier
transforming the ⌫lr(q, z) function for z = 0. (This is
relevant for the interaction between two point charges lo-
cated in the z = 0 plane.) The function is regular at the
origin, and rapidly converges to the Coulomb potential
1/r for r � L, confirming our arguments that the long-
range forces are correctly reproduced at any L. The inset
of Fig. 1 shows a simple interpretation of what we have
done so far in the language of the image-charge method.
The Coulombic 1/r potential of an isolated point charge
(⌫) is decomposed into the potential generated by a linear
array of point charges (⌫sr), spaced by L and with alter-
nating signs, plus the potential generated by the images,
taken with opposite sign (⌫lr). In Appendix B we cor-
roborate the above points by establishing a formal link
to the Coulomb cuto↵ approach [34] – the latter can be
conveniently regarded as an image-charge method as well.

This interpretation clarifies the physical meaning of
the prefactor f(q), which makes ⌫lr(q, z) vanish expo-
nentially for su�ciently large values of q. Indeed, for a
charge modulation of wavevector q � 1/L the images
do not “see” eachother, as the stray fields decay faster
than the vacuum thickness. In such a regime, the Z-
branch electrostatics coincides with the correct one and
⌫lr, which is defined as the di↵erence, vanishes. Also, it is
interesting to note that ⌫lr depends on z only via the hy-
perbolic cosine function. This latter property naturally
leads to a multipolar expansion of the interactions, as we
shall see shortly. Before that, we shall combine the above
results with the formalism of Sec. II A to introduce the
e↵ects of dielectric screening via the polarizability of the
isolated 2D crystal.

C. Treatment of screening

{sec:screen2d}
By using the bisection formula

cosh(z) cosh(z0)� sinh(z) sinh(z0) = cosh(z � z
0)

one can write the long-range part of the Coulomb kernel
in the following form

⌫lr(q, z � z
0) =

2⇡f(q)

q
'(z) ·

✓
1 0
0 �1

◆
·'(z0), (31)

where the functional dependence on the real-space coor-
dinates is all contained in

'(z) =


cosh(qz)
sinh(qz)

�
. (32)

This provides the bare (unscreened) Coulomb interaction
between charge densities, whose key property is the strict
separation between interactions that are inversion-even
and those that are inversion-odd with respect to the z = 0
plane.
Recall that the long-range part of the force-constant

matrix includes screening in the form

�lr
↵,0� = ⇢

sr
↵ · (⌫�1

lr � �sr)
�1 · ⇢sr0� . (33) {philr0}

By treating screening as a perturbation of the bare kernel,
we can formally expand the inverse as

(⌫�1 � �)�1 = ⌫ + ⌫�⌫ + ⌫�⌫�⌫ + · · · (34)

Now, note that the bare kernel always appears between
two charge-density response functions (either ⇢ or �),
which naturally leads to the following representation of
the SR polarizability (S is the cell surface),

�
(lm)
sr (q) =

1

S

Z

cell
d
3
r

Z
d
3
r
0
Al(z)�sr(q, r, r

0)Am(z0).

(35)
and the first-order charge density response to a phonon,

⇢
sr,(m)
↵ (q) =

Z

cell
d
3
r ⇢

sr
↵(q, r)Am(z). (36)

where the components “1” and “2” refer to the hyperbolic
cosine and sine, respectively.
This way, the electrostatic screening problem is re-

duced to elementary linear algebra involving square ma-
trices and vectors of dimension 2, which can be solved
with paper and pencil in the most general case. Most
importantly, if the 2D crystal enjoys a mirror plane at
z = 0, as it is frequently the case for the most common
materials being studied, the polarizability matrix is also
diagonal, just like the bare Coulomb kernel. This means
that the in-plane and out-of-plane electrostatics is decou-
pled by symmetry, and either of them can be treated by
two separate scalar problems. In particular, we have

�lr
↵,0�(q) =

2⇡f(q)

Sq

 
[⇢k↵(q)]⇤ ⇢

k
0�(q)

✏k(q)
�

[⇢?↵(q)]
⇤
⇢
?
0�(q)

✏?(q)

!
, (37) {scr_all}

where we have indicated as k and ? the inversion-even and inversion-odd components of ⇢sr, and

✏k(q) = 1� 2⇡f(q)

q
�
k
sr(q), (38)

✏?(q) = 1 +
2⇡f(q)

q
�
?
sr(q), (39)

2D: )*+ # → 0 ≃ /0
1
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are the corresponding dielectric functions. (Recall that
✏ = 1��⌫, and relates to the screened Coulomb interac-
tion via W = ⌫✏

�1.)
Eq. (37) is one of the main formal results of this work.

Knowledge of the analytical functions ⇢sr(q), �sr(q) and
�sr(q) allows one to reconstruct the exact dynamical ma-
trix in open-boundary conditions by combining Eq. (37)
with Eq. (10). In other words, adding Eq. (37) to �sr(q) a
posteriori yields results that are in all respects equivalent
to the use a priori of, e.g., the Coulomb cuto↵ technique
within the self-consistent calculation of �. Most impor-
tantly, Eq. (37) provides an exact reference that can be
used to build approximated models of the long-range in-
teractions, and to systematically improve them up to an
arbitrary degree of accuracy; we shall discuss this central
point in the following subsection.

D. Multipolar expansion

{sec:multipole}
The only material-dependent quantities entering

Eq. (37) are the charge response to a phonon, ⇢sr↵(q),
and the susceptibility �sr(q). Both are analytic func-
tions of the wavevector q, and hence directly suitable to
a long-wave multipolar expansion. In the following, we
shall demonstrate that the lowest-order terms are read-
ily written in terms of well-known physical properties (di-
electric polarizabilities, Born e↵ective charges, dynamical
quadrupoles, etc.) that can be routinely calculated in a
linear-response context.

The starting point for the long-wave analysis consists
in the Taylor expansion of the hyperbolic sine and cosine,

cosh(qz) = 1 +
q
2
z
2

2!
+ · · · , (40) {cosh}

sinh(qz) = qz +
q
3
z
3

3!
+ · · · . (41) {sinh}

This implies that the material-dependent response func-
tions ⇢ and � are entirely specified by the moments along
z of their respective real-space representations. Regard-
ing the charge-density response, we shall define

M
(m)
↵ =

Z
d
3
r ⇢

sr
↵(q, r)z

m
, (42)

where the lowest-order terms enjoy the following expan-
sion,

M↵(q) =

0

BB@

�iqZ
q̂
↵ � q2

2 Q
q̂q̂
↵ · · ·

Z
?
↵ �iqQ

?q̂
↵ · · ·

Q
??
↵ · · ·
· · ·

1

CCA e
�iq·⌧ .

(43) {rhol}
Here we have explicitly specified dipolar (Z) or
quadrupolar (Q) components that are either in-plane (q̂)
or out-of-plane (?). Note that the quantities indicated by
Z and Q bear a direct relationship to the Born e↵ective

charge [5] and dynamical quadrupole [32] tensors as cal-
culated within standard implementations of DFPT; [35–
37] see Appendix A for a detailed discussion. In all cases
we have stopped the expansion at the overall quadrupo-
lar level; note that there is no monopole at q = 0 because
of charge conservation. The complex phase is a structure
factor that only depends on the in-plane location of the
atom  within the primitive cell; its out-of-plane coor-
dinate is implicitly taken into account by observing that
the out-of-plane moments are all calculated with respect
to the z = 0 plane, which is most conveniently set to
center of symmetry of the 2D layer.
By combining Eq. (43) with Eq. (40) and Eq. (41), we

arrive at {rho_approx}

⇢
k
↵(q) =

✓
�iqZ

q̂
↵ � q

2

2
Q̂

q̂q̂
↵ + · · ·

◆
e
�iq·⌧ , (44a)

⇢
?
↵(q) =

�
qZ

?
↵ � iq

2
Q

?q̂
↵ + · · ·

�
e
�iq·⌧ , (44b)

where we have introduced the “e↵ective” in-plane
quadrupole,

Q̂
q̂q̂ = Q

q̂q̂ �Q
??

. (45)

It might be, at first sight, surprising to see that the
zz component of the dynamical quadrupole tensor con-
tributes to the in-plane electrostatics, and does so with
a negative sign. The point here is that the trace of
the Cartesian quadrupole tensor is irrelevant as it does
not produce long-range electrostatic potentials; the above
formula consistently removes the trace by taking the dif-
ference of the two diagonal components (the electrostatic
problem is essentially two-dimensional in the zq̂ plane).
This result is by no means accidental – on the contrary,
it provides an intuitive physical justification of why the
long-range electrostatics in 2D is mediated by hyperbolic
functions. Indeed, one can show that the Taylor expan-
sion coe�cients of Eq. (40) and Eq. (41) are precisely
those that are required, once combined with Eq. (43),
to isolate the traceless components of the electrostatic
multipole tensor at any given order, m. And in two
dimensions, for m � 1, there are always two indepen-
dent components of the traceless tensor, corresponding
to the spherical harmonics in the zq̂ plane. These spheri-
cal harmonics can be classified as either inversion-even or
inversion-odd with respect to the z = 0 axis, and they do
not couple by symmetry. This explains the strict sepa-
ration between the corresponding interactions in crystals
where inversion symmetry is not violated by the dielectric
screening.
Regarding the polarizability, we can also define a mul-

tipolar expansion by following the same guidelines as
above. For what follows, we shall only be interested in
the lowest-order terms, which are given in terms of the
macroscopic in-plane (↵k) and out-of-plane (↵?) polar-
izabilities of the layer,

�
k
sr(q) = �q ·↵k · q+O(q4), (46a)

�
?
sr(q) = �q

2
↵? +O(q4). (46b)

!∥:
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where we have indicated as k and ? the inversion-even
and inversion-odd components of ⇢sr, and

✏k(q) = 1� 2⇡f(q)

q
�
k
sr(q), (38)

✏?(q) = 1 +
2⇡f(q)

q
�
?
sr(q), (39)

are the corresponding dielectric functions. (Recall that
✏ = 1��⌫, and relates to the screened Coulomb interac-
tion via W = ⌫✏

�1.)
Eq. (37) is one of the main formal results of this work.

Knowledge of the analytical functions ⇢sr(q), �sr(q) and
�sr(q) allows one to reconstruct the exact dynamical ma-
trix in open-boundary conditions by combining Eq. (37)
with Eq. (10). In other words, adding Eq. (37) to �sr(q) a
posteriori yields results that are in all respects equivalent
to the use a priori of, e.g., the Coulomb cuto↵ technique
within the self-consistent calculation of �. Most impor-
tantly, Eq. (37) provides an exact reference that can be
used to build approximated models of the long-range in-
teractions, and to systematically improve them up to an
arbitrary degree of accuracy; we shall discuss this central
point in the following subsection.

D. Multipolar expansion

{sec:multipole}
The only material-dependent quantities entering

Eq. (37) are the charge response to a phonon, ⇢sr↵(q),
and the susceptibility �sr(q). Both are analytic func-
tions of the wavevector q, and hence directly suitable to
a long-wave multipolar expansion. In the following, we
shall demonstrate that the lowest-order terms are read-
ily written in terms of well-known physical properties (di-
electric polarizabilities, Born e↵ective charges, dynamical
quadrupoles, etc.) that can be routinely calculated in a
linear-response context.

The starting point for the long-wave analysis consists
in the Taylor expansion of the hyperbolic sine and cosine,

cosh(qz) = 1 +
q
2
z
2

2!
+ · · · , (40) {cosh}

sinh(qz) = qz +
q
3
z
3

3!
+ · · · . (41) {sinh}

sinh(qz) = qz + · · · (42)

This implies that the material-dependent response func-
tions ⇢ and � are entirely specified by the moments along
z of their respective real-space representations. Regard-
ing the charge-density response, we shall define

M
(m)
↵ =

Z
d
3
r ⇢

sr
↵(q, r)z

m
, (43)

where the lowest-order terms enjoy the following expan-

sion,

M↵(q) =

0

BB@

�iqZ
q̂
↵ � q2

2 Q
q̂q̂
↵ · · ·

Z
?
↵ �iqQ

?q̂
↵ · · ·

Q
??
↵ · · ·
· · ·

1

CCA e
�iq·⌧ .

(44) {rhol}
Here we have explicitly specified dipolar (Z) or
quadrupolar (Q) components that are either in-plane (q̂)
or out-of-plane (?). Note that the quantities indicated by
Z and Q bear a direct relationship to the Born e↵ective
charge [? ] and dynamical quadrupole [? ] tensors as cal-
culated within standard implementations of DFPT; [? ?
? ] see Appendix ?? for a detailed discussion. In all cases
we have stopped the expansion at the overall quadrupo-
lar level; note that there is no monopole at q = 0 because
of charge conservation. The complex phase is a structure
factor that only depends on the in-plane location of the
atom  within the primitive cell; its out-of-plane coor-
dinate is implicitly taken into account by observing that
the out-of-plane moments are all calculated with respect
to the z = 0 plane, which is most conveniently set to
center of symmetry of the 2D layer.

By combining Eq. (??) with Eq. (??) and Eq. (??), we
arrive at {rho_approx}

⇢
k
↵(q) =

✓
�iqZ

q̂
↵ � q

2

2
Q̂

q̂q̂
↵ + · · ·

◆
e
�iq·⌧ , (45a)

⇢
?
↵(q) =

�
qZ

?
↵ � iq

2
Q

?q̂
↵ + · · ·

�
e
�iq·⌧ , (45b)

where we have introduced the “e↵ective” in-plane
quadrupole,

Q̂
q̂q̂ = Q

q̂q̂ �Q
??

. (46)

It might be, at first sight, surprising to see that the
zz component of the dynamical quadrupole tensor con-
tributes to the in-plane electrostatics, and does so with
a negative sign. The point here is that the trace of
the Cartesian quadrupole tensor is irrelevant as it does
not produce long-range electrostatic potentials; the above
formula consistently removes the trace by taking the dif-
ference of the two diagonal components (the electrostatic
problem is essentially two-dimensional in the zq̂ plane).
This result is by no means accidental – on the contrary,
it provides an intuitive physical justification of why the
long-range electrostatics in 2D is mediated by hyperbolic
functions. Indeed, one can show that the Taylor expan-
sion coe�cients of Eq. (??) and Eq. (??) are precisely
those that are required, once combined with Eq. (??),
to isolate the traceless components of the electrostatic
multipole tensor at any given order, m. And in two
dimensions, for m � 1, there are always two indepen-
dent components of the traceless tensor, corresponding
to the spherical harmonics in the zq̂ plane. These spheri-
cal harmonics can be classified as either inversion-even or
inversion-odd with respect to the z = 0 axis, and they do
not couple by symmetry. This explains the strict sepa-
ration between the corresponding interactions in crystals

!#:

sinh and	cosh pick the two independent traceless components of 
the 2D charge multipoles (cylindrical harmonics)

Example (quadrupoles):  -∥ = -(00) − -(33)

inversion-odd

4# -#

inversion-evenz

q
4∥ -∥



Exact formula with mirror symmetry

∥ : inversion-even ⊥ : inversion-odd

# $ ≃ # − '$( + ⋯

Ø Inversion-even part consistent, at lowest order, with earlier 2D dielectric models
(Sohier et al., Nano Letters 2017)

Ø Inversion-odd terms are new; improved treatment of screening; inclusion of 
dynamical quadrupoles

Ø Exact up to arbitrary order in the multipolar expansion [ present work: +($-) ]

/ $ ≃ 1 ± 23$4 + ⋯
polarizability
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To understand the physics that lies behind the two-
component nature of the electrostatic potentials and op-
erators, it is useful to recall some basic properties of the
hyperbolic functions appearing in Eq. (22). The hyper-
bolic cosine is manifestly an even function of z, while the
sine is odd: at the lowest order, the former reduces to an
electric field acting parallel to the plane, while the latter
corresponds to a perpendicular field. (To reflect this fact,
we shall indicate the two components of the relevant ma-
trices and vectors with the “k” and “?” symbols hence-
forth.) This means that the cosh and sinh potentials
mediate electrostatic interactions between charge densi-
ties that are, respectively, even and odd with respect to
z-reflection. The emergence of an inversion-odd compo-
nent marks a drastic departure from the 3D case, where
transverse electric fields are forbidden by construction
as the crystal Hamiltonian retains full translational pe-
riodicity in the planes perpendicular to the propagation
direction of the phonon.

One may wonder, at this point, whether the cosh and
sinh dependence of '(z) carries any deep physical signifi-
cance beyond its interpretation as a uniform electric field
at the leading order in q. The answer is yes: such a func-
tional dependendence has the purpose (a detailed proof
can be found in Appendix C) of isolating the traceless
components of the Cartesian multipole tensor associated
with a given charge perturbation. The trace of the Carte-
sian multipole tensor at any given order, m, is irrelevant
for electrostatics, as it does not produce long-range po-
tentials; and the hyperbolic functions enforce this phys-
ical fact, demonstrating the internal consistency of our
theory. Note that in two dimensions, for m � 1, there
are always two independent components of the traceless
tensor, corresponding to the cylindrical harmonics in the
qz plane – this is nicely reflected in the two-component
nature of the long-range Coulomb interactions as defined
by Eq. (21). These harmonics, in turn, can be classified
as either inversion-even or inversion-odd with respect to
the z = 0 axis, consistent with the above arguments.
Since the small-space kernel is diagonal in this space, the
two subsystems remain uncoupled unless the 2D crystal
breaks the z = 0 mirror symmetry; we shall see an ex-
ample shortly.

D. Multipolar expansion

Further insight can be gained by observing that
cosh(qz) and sinh(qz)/q are both analytic functions of
q, which naturally leads to a long-wave expansion of �sr

and ⇢
sr. Regarding �sr, we have

�sr(q) = �
✓
q ·↵k · q q� · q
q� · q q

2
↵
?

◆
+O(q4), (26)

where we have introduced the in-plane (↵k) and out-of-
plane (↵?) macroscopic polarizabilities of the layer, and
�m denotes the o↵-diagonal elements that couple in-plane
and out-of-plane dipoles; their relation to the macro-
scopic dielectric tensor of the supercell is described in
Appendix A. Note that these relationships are exact, i.e.
they do not rely of any assumption regarding the physi-
cal properties of the layer, unlike the dielectric model of
Ref. 21.

The charge-response functions, on the other hand, can
be conveniently expanded as

⇢
k
↵(q) = �iq�

h
Ẑ

(�)
↵ � i

q�

2

⇣
Q̂

(��)
↵ � ���Q̂

(zz)
↵

⌘
+ · · ·

i

| {z }
Z(�)

↵ (q)

e
�iq·⌧ ,

(27a)

⇢
?
↵(q) = q

h
Ẑ

(z)
↵ � iq�Q̂

(z�)
↵ + · · ·

i

| {z }
Z?

↵(q)

e
�iq·⌧ , (27b)

where the complex phase is a structure factor that de-
pends on the in-plane location of the atom  within the
cell, and we have indicated as Ẑ↵ and Q̂↵ the dynam-
ical dipole and quadrupole tensors in 2D. These gener-
ally di↵er from their standard definitions in 3D (see Ap-
pendix A for details): (i) the electrical boundary condi-
tions are set to short circuit in plane, and open circuit
along z, consistent with the “zone-boundary” electrostat-
ics; (ii) the Cartesian moments along z are calculated
with respect to the z = 0 plane, which corresponds to the

center of the 2D layer. The way Q̂
(zz)
↵ enters Eq. (27),

which stems from the asymptotic expansion of the hy-
perbolic cosine, cosh(qz) ' 1 + q

2
z
2
/2, is nicely consis-

tent with the traceless nature of the higher-order tensors,
which we have anticipated in the previous Section.

While the above formalism is entirely general, for sim-
plicity we shall focus henceforth on 2D crystals that en-
joy a mirror plane at z = 0. This assumption implies
that the o↵-diagonal component of the polarizability, �m,
vanishes by symmetry, and the diagonal elements of the
screened Coulomb interactions can be treated as two sep-
arate scalar problems. By plugging the long-wave expan-
sions of the densities, Eq. (27), and the dielectric func-
tions, Eq. (26), into Eq. (25), we obtain the following
formula for the long-range interatomic forces,

�lr
↵,0�(q) =

2⇡f(q)

Sq

 
(q ·Z)⇤↵ (q ·Z)0�

✏k(q)
� q

2
Z?⇤

↵ Z?
0�

✏?(q)

!
e
�iq·(⌧0�⌧). (28)



Application: interpolation of phonon bands (BN)

Ø LO band: More accurate interpolation due to better treatment of screening

This work: https://arxiv.org/abs/2012.07961 [12]: Sohier et al., Nano Lett. 17, 3758 (2017)
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Application: interpolation of phonon bands (BN)

Ø ZO band: linear dispersion approaching Γ, but negative slope
(inversion-odd part of the long-range electrostatics)

This work: https://arxiv.org/abs/2012.07961 [12]: Sohier et al., Nano Lett. 17, 3758 (2017)
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Summary

Ø Range separation of the bare Coulomb kernel in 2D: image-charge technique
Ø Long-range electrostatic interactions mediated by cosh(&') and 
sinh(&') potentials

Ø Exact formula for the long-range interatomic forces
Ø Multipolar expansion: Born charges, quadrupoles, etc.

Ø Inversion-odd part of the electrostatics (ZO branch in BN)
Ø Improved treatment of the dielectric function
Ø Implications for e-ph calculations (3D: see G. Brunin et al., PRL 2020)

https://arxiv.org/abs/2012.07961


