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• Electromechanical coupling: 
transducers – actuators, smart devices

• Electrostrictive strains too small
~10-8 %

• Giant electrostrictors*: strains of ~0.6%

• Advantages over Piezo-transducers:
- Temperature stability 
- Low hysteresis
- Lead free

• Find Giant Electrostrictors; Find origin of Giant Electrostriction

Motivation: Why calculate electrostriction? 3.

* [R. Korobko et al. Adv. Mater. (2012), 24, 5857] ; [N. Yavo et al. Acta Mater. (2018), 144, 411]

† [Q. Li et al. Phys. Rev. Mat. (2018), 2, 041403(R)]

†
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Finite Field and PAW in ABINIT 7.

• P Vs E by DFPT and finite field with both PAW and NCPP

• PAW finite field: incorrect behaviour, permitivity

• => Incorrect electrsotrictive coefficients

• DFPT works with PAW – can use current method with PAW for large unit cells/supercells
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Indirect Calculation of Electrostriction
Simulation Details

• DFPT ABINIT;  

• Ecut=50 Ha; 

• 8x8x8 monkorst pack-grid; 

• Pseudodojo NCPP; 

• PBEsol; 

• Rocksalt MgO

8.



• Strain (xij) between ±0.5%;  calculate stress 𝑋𝑖𝑗, 

susceptibility 𝜒, and inverse susceptibility 𝜂.

• Fit 𝜒 and 𝜂 vs 𝑋𝑖𝑗/𝑥𝑖𝑗 for electrostrictive

coefficients.

• Qh, Mh, mh and qh obtained in same calculation

Indirect Calculation of Electrostriction
Pressure derivative of χ𝑖𝑗and η𝑖𝑗 in MgO

9.



Direct Calculation of Electrostriction
Electric/Displacement Field Response - Strain

• Full energy minimisation under fixed 𝐸𝑧, 𝐷𝑧

• Longitudinal expansion; Transverse contraction.
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Direct Calculation of Electrostriction
Electric/Displacement Field Response - Strain

• Full energy minimisation under fixed 𝐸𝑧, 𝐷𝑧

• Longitudinal expansion; Transverse contraction.

10.

• Stress coefficients m, q: Relax only internal positions 
under fixed 𝐸𝑧, 𝐷𝑧; calculate stress.



Comparison between Direct and Indirect methods

• Agreement between methods and exp: Coefficients
normalised to Exp 1 in bar chart.
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Comparison between Direct and Indirect methods

• Agreement between methods and exp: Coefficients
normalised to Exp 1 in bar chart.

• Faster convergence with k-points and cut-off energy.

• 8 times faster for given k-point density, cutoff energy.

12.



Outline

• Motivation
- Wℎ𝑦 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛
- 𝐻𝑜𝑤 𝑏𝑒𝑠𝑡 𝑡𝑜 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒: 𝐿𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑣𝑖𝑒𝑤

• Indirect Calculation of Electrostriction
- Introduction and advantages

- Validation/Comparison

• Application

• Summary and Outlook



Application
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Application
Electrostriction at ferroelectric phase transition: KTaO3

13.

• Compressive strain induced phase transition: 𝜖𝑧 diverges

• Transition driven by z-polar soft mode

• 𝑀33 also diverges

• Reaches 1𝑥10−15: 𝑑33
𝑒𝑓𝑓

= 60 000 pm/V; compare 
162 pm/V for PZT

• decomposition shows soft polar mode responsable



⟹ Large strain in response to E field does not mean large strain in response to P field

Materials with large Qh do not necessarily have large Mh

Application
Correlation between Mh and Qh

14.
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• Stress/strain dependence of permitivity best way to compute
Electrostriction.

• Validated method against finite field calculation and experiment

• Advantages: Fewer calculations; Faster convergence; 8
times faster computation; Decomposition of tensors

• Applications: 

- Analysed electrostriction at ferroelectric phase transition

- Demonstrated 𝑀ℎ and 𝑄ℎ are uncorrelated

Summary 15.
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• Q33 does vary at the phase transition, but only
by  ≈4%
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• Q12 changes sign
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• q33 less complicated behaviour



Application
Decomposition of BaZrO3 Mh

• Permitivity has electronic contribution, but electrostriction does not

• Softest polar mode, with largest polarity contributes most

• 4 coefficients 𝑚ℎ, 𝑀ℎ, 𝑞ℎ , and 𝑄ℎ have same composition

14.


