On the calculation of electrostriction by DFT

D. S. P. Tanner^{1,2}, and P-E. Janolin², E. Bousquet¹

¹Université de Liège, Q-MAT, CESAM, Institut de Physique ²Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190, Gif-sur-Yvette, France

Project ANR-19-ASTR-0024, "MEGAEM"

• Crystal Mechanical response to *E* feld:

• Crystal Mechanical response to *E* feld:

• Electrostriction (all crystals), strain quadratic with \vec{E} ; Piezoelectricity (non-centric), strain linear with \vec{E}

$$x_{ij} = \boldsymbol{d_{ijm}} E_m + \boldsymbol{M_{ijmn}} E_m E_n$$

• Crystal Mechanical response to *E* feld:

• Electrostriction (all crystals), strain quadratic with \vec{E} ; Piezoelectricity (non-centric), strain linear with \vec{E}

$$x_{ij} = \boldsymbol{M_{ijmn}} \boldsymbol{E_m} \boldsymbol{E_n}$$

Outline

Motivation

- Why calculate electrostriction?
- How best to calculate: Literature review
- DFPT Calculation of Electrostriction
 - Derivation and advantages
 - Validation/Comparison
- Application of method

Summary and Outlook

Outline

Motivation

- Why calculate electrostriction?

- How best to calculate: Literature review
- Indirect Calculation of Electrostriction
 - Derivation and advantages
 - Validation/Comparison
- Application

Summary and Outlook

Motivation: Why calculate electrostriction?

- Electromechanical coupling: transducers – actuators, smart devices
- Electrostrictive strains too small ~10⁻⁸ %

Motivation: Why calculate electrostriction?

- Electromechanical coupling: transducers – actuators, smart devices
- Electrostrictive strains too small ~10⁻⁸ %
- **Giant** electrostrictors*: strains of ~0.6%
- Advantages over Piezo-transducers:
 - Temperature stability
 - Low hysteresis
 - Lead free

E-field

• Find Giant Electrostrictors; Find origin of Giant Electrostriction

* [R. Korobko *et al.* Adv. Mater. (2012), **24**, 5857]; [N. Yavo *et al.* Acta Mater. (2018), **144**, 411]
† [Q. Li *et al.* Phys. Rev. Mat. (2018), **2**, 041403(R)]

Outline

Motivation

- Why calculate electrostriction
- How best to calculate: Literature review
- Indirect Calculation of Electrostriction
 - Derivation and advantages
 - Example calculation: MgO
 - Comparison/validation against direct calculation
- Application

Summary and Outlook

AIP Conference Proceedings 1199, 71 (2010)

Electrostriction Coefficients of GaN, AlN, MgO and ZnO in the Wurtzite Structure from First-Principles

I. Kornev*, M. Willatzen*, B. Lassen* and L. C. Lew Yan Voon[†]

. Finite E field methods

 $X_{ij} = \mathbf{m}E^2$

AIP ADVANCES 6, 065122 (2016)

Electrostriction coefficient of ferroelectric materials from *ab initio* computation

Z. Jiang,^{1,2} R. Zhang,³ F. Li,¹ L. Jin,¹ N. Zhang,¹ D. Wang,^{1,a} and C.-L. Jia^{1,4}

Electrostriction at the LaAlO₃/SrTiO₃ Interface

. Finite **D** field methods

 $x_{ij} = \boldsymbol{Q_{ijmn}} P_m P_n$

4.

AIP Conference Proceedings 1199, 71 (2010)

Outline

• Motivation

- Why calculate electrostriction?
- How to calculate: Literature review

Indirect Calculation of Electrostriction

- Derivation and advantages
- Validation/Comparison
- Application

Summary and Outlook

Thermodynamical derivation for M_{ijkl}

Thermodynamical derivation for M_{ijkl}

Thermodynamical derivation for M_{ijkl}

New Expression $M_{klij} = \frac{1}{2} \frac{\partial^2 x_{kl}}{\partial E_i E_i} = \frac{1}{2} \frac{\partial \chi_{ij}}{\partial X_{kl}}$

6.

Indirect method		Direct method	
Δχ/Δη		$\Delta x / \Delta X$	
$\overline{\Delta X / \Delta x}$		$\overline{\Delta E / \Delta P}$	
	八		

Indirect method

 $\frac{\Delta \chi / \Delta \eta}{\Delta X / \Delta x}$

Hydrostatic strain/pressure

Direct method $\frac{\Delta x / \Delta X}{\Delta E / \Delta P}$

X Always Unidirectional field.

$$X \quad \frac{E_g}{N_k e} > \frac{Ea}{2\pi} \text{ must hold}$$

Indirect method $\Delta \chi / \Delta \eta$

 $\frac{\lambda x}{\Delta X/\Delta x}$

Hydrostatic strain/pressure

✓ Can investigate at closing E_g .

Direct method $\frac{\Delta x / \Delta X}{\Delta E / \Delta P}$

X Always Unidirectional field.

$$X \quad \frac{E_g}{N_k e} > \frac{Ea}{2\pi} \text{ must hold}$$

Indirect method $\Delta \chi / \Delta \eta$

 $\frac{-\chi}{\Delta X/\Delta x}$

Hydrostatic strain/pressure

Can investigate at closing E_g .

Decomposition of tensor

Direct method $\frac{\Delta x / \Delta X}{\Delta E / \Delta P}$

X Always Unidirectional field.

$$X \quad \frac{E_g}{N_k e} > \frac{Ea}{2\pi} \text{ must hold}$$

X No easy decomposition of tensor

Indirect method $\Delta \chi / \Delta \eta$

 $\frac{\Delta X}{\Delta X}$

Hydrostatic strain/pressure

✓ Can investigate at closing E_g .

Decomposition of tensor

 ✓ Well established (1990): excellent infrastructure Direct method $\frac{\Delta x / \Delta X}{\Delta E / \Delta P}$

X Always Unidirectional field.

$$X \quad \frac{E_g}{N_k e} > \frac{Ea}{2\pi} \text{ must hold}$$

- X No easy decomposition of tensor
- X New (2009):
 - No parallelism for **D**
 - PAW erroneous results

Finite Field and PAW in ABINIT

- P Vs E by DFPT and finite field with both PAW and NCPP
- PAW finite field: incorrect behaviour, permitivity
- => Incorrect electrsotrictive coefficients
- DFPT works with PAW can use current method with PAW for large unit cells/supercells

Indirect method $\Delta \chi / \Delta \eta$

 $\frac{\Delta X}{\Delta X}$

Hydrostatic strain/pressure

✓ Can investigate at closing E_g .

Decomposition of tensor

 ✓ Well established (1990): excellent infrastructure Direct method $\frac{\Delta x / \Delta X}{\Delta E / \Delta P}$

X Always Unidirectional field.

$$X \quad \frac{E_g}{N_k e} > \frac{Ea}{2\pi} \text{ must hold}$$

- X No easy decomposition of tensor
- X New (2009):
 - No parallelism for **D**
 - PAW erroneous results

Outline

• Motivation

- Why calculate electrostriction
- How to calculate: Literature review

Indirect Calculation of Electrostriction

- Introduction and advantages
- Validation/Comparison
- Application

Summary and Outlook

Simulation Details

• DFPT ABINIT;

- Ecut=50 Ha;
- 8x8x8 monkorst pack-grid;
- Pseudodojo NCPP;
- PBEsol;
- Rocksalt MgO

Indirect Calculation of Electrostriction Pressure derivative of χ_{ij} and η_{ij} in MgO

- Strain (x_i) between ±0.5%; calculate stress X_{ij}, susceptibility χ, and inverse susceptibility η.
- Fit χ and η vs X_{ij}/x_{ij} for electrostrictive coefficients.

• Qh, Mh, mh and qh obtained in same calculation

Electric/Displacement Field Response - Strain

• Full energy minimisation under fixed E_z , D_z

• Longitudinal expansion; Transverse contraction.

Electric/Displacement Field Response - Strain

 $0.4 \quad 0.6 \quad 0.8$

0.2

 $P_3 \ (10^{-1} \mathrm{Cm}^{-2})$

-1

-0.8 -0.6 -0.4 -0.2 0

Comparison between Direct and Indirect methods

• Agreement between methods and exp: Coefficients normalised to Exp 1 in bar chart.

Comparison between Direct and Indirect methods

Agreement between methods and exp: Coefficients normalised to Exp 1 in bar chart.

- Faster convergence with k-points and cut-off energy. ٠
- **8 times faster** for given k-point density, cutoff energy. •

Outline

- Motivation
 - Why calculate electrostriction
 - How best to calculate: Literature review
- Indirect Calculation of Electrostriction
 - Introduction and advantages
 - Validation/Comparison
- Application

Summary and Outlook

Application

Electrostriction at ferroelectric phase transition: KTaO3

- Compressive strain induced phase transition: ϵ_z diverges
- Transition driven z-polar soft mode

Application

Electrostriction at ferroelectric phase transition: KTaO3

• Compressive strain induced phase transition: ϵ_z diverges

- Transition driven by z-polar soft mode
- M₃₃ also diverges
- Reaches $1x10^{-15}$: d_{33}^{eff} = 60 000 pm/V; compare 162 pm/V for PZT

Application

Electrostriction at ferroelectric phase transition: KTaO3

• Compressive strain induced phase transition: ϵ_z diverges

- Transition driven by z-polar soft mode
- M₃₃ also diverges
- Reaches $1x10^{-15}$: d_{33}^{eff} = 60 000 pm/V; compare 162 pm/V for PZT
- decomposition shows soft polar mode responsable

Application Correlation between Mh and Qh

Materials with large Qh do not necessarily have large Mh

 \Rightarrow Large strain in response to E field does not mean large strain in response to P field

Outline

• Motivation

- Why calculate electrostriction
- How best to calculate: Literature review
- Indirect Calculation of Electrostriction
 - Introduction and advantages
 - Validation/Comparison
- Application

Summary

Summary

- Stress/strain dependence of permitivity best way to compute Electrostriction.
- Validated method against finite field calculation and experiment
- Advantages: Fewer calculations; Faster convergence; 8 times faster computation; Decomposition of tensors
- Applications:
 - Analysed electrostriction at ferroelectric phase transition
 - Demonstrated M_h and Q_h are uncorrelated

Project ANR-19-ASTR-0024, "MEGAEM"

Electrostriction at ferroelectric phase transition of KTaO3 **Q coefficients**

 Q33 does vary at the phase transition, but only by ≈4%

Electrostriction at ferroelectric phase transition of KTaO3 **Q coefficients**

- Q33 does vary at the phase transition, but only by ≈4%
- Q12 changes sign

14.

Electrostriction at ferroelectric phase transition of KTaO3 14. **Q coefficients**

• q33 less complicated behaviour

Application Decomposition of BaZrO3 Mh

- Permitivity has electronic contribution, but electrostriction does not
- Softest polar mode, with largest polarity contributes most
- 4 coefficients m_h , M_h , q_h , and Q_h have same composition

