
Orbital magnetism in the projector-augmented wave formalism

Orbital magnetism in the projector-augmented

wave formalism

J. W. Zwanziger

Dept of Chemistry, Dalhousie University, Halifax, Nova Scotia

June 2021

1 / 27



Orbital magnetism in the projector-augmented wave formalism

What’s the basic problem?

How does a solid react to a
homogeneous magnetic field?

◮ Spinless electrons, in a solid, in
an external magnetic field.

◮ Classically, no magnetization
could result (Bohr-Van
Leeuwen theorem)

◮ Quantum mechanically, angular
momentum states can be
stabilized that lead to currents,
and changes in the energy.
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Orbital magnetism in the projector-augmented wave formalism

Why is it a hard problem?

◮ Basic interaction is B · L = B · r × p which is NOT periodic.

◮ Hamiltonian is 1
2(p− qA)2 + V , where B = ∇×A so must

cope with gauge variance issues.
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What’s to be gained?

◮ Energy derivatives:

◮ Magnetization: ∂E/∂B
◮ Susceptibility: ∂2E/∂B2

◮ Mixed derivatives

◮ Chemical shielding:
∂2E/∂µ∂B

◮ Magneto-electric
response: ∂2E/∂E∂B

and doubtless others
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Plan of attack

◮ Account for vector potential to obtain cell periodic PAW transform
and operators

5 / 27



Orbital magnetism in the projector-augmented wave formalism

Plan of attack

◮ Account for vector potential to obtain cell periodic PAW transform
and operators

◮ Construct total energy, in presence of magnetic field, using these
PAW and operator objects

6 / 27



Orbital magnetism in the projector-augmented wave formalism

Plan of attack

◮ Account for vector potential to obtain cell periodic PAW transform
and operators

◮ Construct total energy, in presence of magnetic field, using these
PAW and operator objects

◮ Functional differentiation to obtain magnetic field dependent
Hamiltonian, to first order

7 / 27



Orbital magnetism in the projector-augmented wave formalism

Plan of attack

◮ Account for vector potential to obtain cell periodic PAW transform
and operators

◮ Construct total energy, in presence of magnetic field, using these
PAW and operator objects

◮ Functional differentiation to obtain magnetic field dependent
Hamiltonian, to first order

◮ Also, use idempotency condition ρ = ρSρ and magnetic translation
invariance to find expression for density operator to first order in
magnetic field.

8 / 27



Orbital magnetism in the projector-augmented wave formalism

Plan of attack

◮ Account for vector potential to obtain cell periodic PAW transform
and operators

◮ Construct total energy, in presence of magnetic field, using these
PAW and operator objects

◮ Functional differentiation to obtain magnetic field dependent
Hamiltonian, to first order

◮ Also, use idempotency condition ρ = ρSρ and magnetic translation
invariance to find expression for density operator to first order in
magnetic field.

◮ Find energy to first order in magnetic field through

Tr[ρH ] ≈ Tr[ρ0H0] + Tr[ρ1H0] + Tr[ρ0H1]
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Orbital magnetism in the projector-augmented wave formalism

Translation in a vector potential

One ingredient we use in our treatment is the Gauge Including
PAW transformation.
The usual generator of translations, p, becomes the canonical
momentum p− qA. This leads to

〈r|Ψ〉 = e
i
2
B·r×t〈r − t|Ψ〉

for translation by t.
This leads to a modified PAW transform, where the on-site
projectors and wavefunctions located at ionic site R acquire the

phase factor G = e
i
2
B·r×R:

T = 1 +
∑

G(|φRi 〉 − |φ̃Ri〉)〈p̃Ri |G
†.
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Orbital magnetism in the projector-augmented wave formalism

Magnetic translation symmetry
The second, related ingredient applies to general operators, again
where A = 1

2B× r:

Or1,r2 = Or1,r2e
i
2
B·r1×r2 ,

where O is cell-periodic.
The result are various modified PAW objects:

KE = −
1

2
∇2;

S = 1 +
∑

Rij

e
i
2
B·(r1−R)×(r2−R)|p̃iR〉qRij〈p̃jR |;

ρijR =
∑

nk

e
i
2
B·(r1−R)×(r2−R)〈ψ̃nk |p̃iR〉〈p̃jR |ψ̃nk〉.

We can now develop H0 and H1.
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Perturbing the density operator

The idempotency condition ρ = ρSρ yields in a perturbation
expansion:

ρ0k = ρ0kS
0
kρ

0
k

ρ1k = ρ1kS
0
kρ

0
k + ρ0kS

1
kρ

0
k + ρ0kS

0
kρ

1
k −

i

2
ǫαβγBα ×

[

(∂βρ
0
k)(∂γS

0
k)ρ

0
k + (∂βρ

0
k)S

0
k(∂γρ

0
k) + ρ0k(∂βS

0
k)(∂γρ

0
k)
]

Because the energy term depends only on Tr[ρ
(1)
k H

(0)
k ], we need

these expressions projected only in the unperturbed valence and
conduction subspaces.
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Subspace projections

Valence subspace:

(ρ0kS
0
k)ρ

1
k(S

0
kρ

0
k) = −ρ0kS

1
kρ

0
k +

i

2
ǫαβγBα(ρ

0
kS

0
k) [. . .] (S

0
kρ

0
k)

Conduction subspace:

(

1− ρ0kS
0
k

)

ρ1k

(

1− S
0
kρ

0
k

)

=

−
i

2
ǫαβγBα

(

1− ρ0kS
0
k

)

[. . .]
(

1− S
0
kρ

0
k

)

where [. . .] are the three partial derivative terms.
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Finally, key terms

Main contribution from ρ1:

i

2(2π)2
ǫαβγ

occ
∑

n

〈Pc

(

∂β ū
(0)
nk

)

|H̄
(0)
k + E

(0)
nk |Pc

(

∂γ ū
(0)
nk

)

〉.

Main contribution from H1:

−
i

2(2π)2
ǫαβγ

∑

Rijn

〈ū
(0)
n,k|∂β p̃Rik〉(D̂

(0)
ij +D

1,(0)
ij − D̃

1,(0)
ij )〈∂γ p̃Rjk |ū

(0)
n,k〉
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Remarks

◮ Final resulting quantity: ∂E/∂B|B=0.
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Remarks

◮ Final resulting quantity: ∂E/∂B|B=0.

◮ Our development is identical to “modern theory of
magnetization” at first order/all electron level.

◮ But our treatment is extensible to all orders, also treats PAW
fully.

◮ Work flow: compute ground state wavefunctions, DDK
wavefunctions, then assemble terms.

◮ For insulators, result is zero. . . so break that by applying a
fixed nuclear magnetic dipole at the site of interest.
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Orbital magnetism in the projector-augmented wave formalism

Nuclear magnetic dipole

In atomic units the first order
nuclear dipole Hamiltonian is

α2m× (r − R) · p

|r− R|3
≡ α2 LR ·m

|r − R|3

where α is the fine structure
constant, and LR = (r − R)× p.
This term has lattice periodicity.
Applied with nucdipmom input
variable (turn off symmetry).
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Gauge Invariance

◮ Electric field problems: Berry phase

i

∮

dk〈unk|∇|unk〉

Integrand is not gauge invariant but integral is; discretization
of the wavefunction and finite differences is required to
enforce gauge choice locally.

◮ Magnetic field problems: Berry curvature

i

∫

dk〈∇unk| × |∇unk〉

Integrand itself is gauge invariant, no discretization necessary,
can use DDK wavefunctions computed from DFPT!
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Convergence comparison

Comparing the 〈∂βu|E |∂γu〉 term, with discretized derivatives and
DDK derivatives
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Orbital magnetism in the projector-augmented wave formalism

Preliminary Results

Boron chemical shieldings: σ = − ∂2E
∂B∂µ

where µ is nuclear dipole
applied to B site of interest.

Compound This work QE

BN 0 0
BP -48 -30

B2O3(1) 16 15.0
B2O3(2) 17 15.4

high pressure B2O3 -4 -1
α−B(1) 7 2
α−B(2) 9 5
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Orbital magnetism in the projector-augmented wave formalism

Band-by-band decomposition aids interpretation

Main terms by band for boron shielding in BN, compared to fat
bands at B
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Orbital magnetism in the projector-augmented wave formalism

Next steps

◮ ρ1 (the conduction and
valence space parts) seem to
be complete, but H1 is
“mostly” complete.

◮ Agreement with reference
cases (for example,
Quantum Espresso chemical
shielding) is not as close as
it should be.

Every time I think I’m done. . .
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Summary

◮ Orbital magnetism coded for insulators (see m orbmag.F90),
currently in extensive tests

◮ Requires PAW

◮ Parallelized over k pts

◮ So grateful to Xavier Gonze and Marc Torrent for much help
and advice
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Some references

◮ Perturbation approach: Gonze and Zwanziger, PRB 84

064445 (2011).

◮ GIPAW: Pickard and Mauri, PRB 63, 245101 (2001).

◮ Magnetic translation symmetry: Essin, Turner, Moore, and
Vanderbilt, PRB 81 205104 (2010).

◮ Orbital magnetism: Ceresoli, Thonhauser, Vanderbilt, and
Resta, PRB 74 024408 (2006).

◮ Shielding: Thonhauser, Ceresoli, Mostofi, Marzari, Resta, and
Vanderbilt, JCP 131 101101 (2009).
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