ABINIT Workshop, University of Liege, January 29-31, 2007

PAW IMPLEMENTATION IN ABINIT AND ATOMIC DATA GENERATION

<u>F. JOLLET</u>, M. TORRENT, G.ZERAH, B. AMADON, F. BOTTIN, S. MAZEVET Commissariat à l'Energie Atomique, Centre d'Etudes de Bruyères le Châtel, France

N. HOLZWARTH

Wake Forest University, Winston-Salem, NC, USA

X. GONZE

Université Catholique de Louvain-la-Neuve, Belgium

ABINIT Workshop, Liège

Summary

œ

- PAW implementation in ABINIT: State of the art
- PAW atomic data generators for ABINIT

$$\left| \Psi_{n} \right\rangle = \left| \widetilde{\Psi}_{n} \right\rangle + \sum_{i} \left(\left| \phi_{i} \right\rangle - \left| \widetilde{\phi}_{i} \right\rangle \right) \left\langle \widetilde{p}_{i} \right| \widetilde{\Psi}_{n} \right\rangle$$

A. Dewaele, P. Loubeyre, F. Ocelli, M. Mezouar, P.I. Dorogokupets, M. Torrent, PRL, 97, 215504 (2005) Cutoff convergency

New developments:

- GS parallelisation
- XML format for atomic data
- LDA + U
- Wannier functions
- Electrical conductivity
- Core level absorption
- Linear response (phonons)

F. Bottin talk

B. Amadon talk

S. Mazevet talk

M. Torrent talk

How to develop a new functionality in the PAW framework? General way:

apply the PAW transformation to the formula you want to code

 $M = \langle \Psi | A | \Psi \rangle = \langle \widetilde{\Psi} | \widetilde{A} | \widetilde{\Psi} \rangle \quad \text{with} \quad \widetilde{A} = A + \sum_{i,j} |p_i\rangle \langle \langle \phi_i | A | \phi_j \rangle - \langle \widetilde{\phi}_i | A | \widetilde{\phi}_j \rangle \rangle \langle p_j |$ where A is a local operator

Examples:

Wannier functions: $A = e^{-i\vec{b}\vec{r}}$

Conductivity:
$$A = \langle \Psi_n | \nabla | \Psi_m \rangle$$

Linear response

Approximate way: case of localized wavefunctions

When the wavefunction Ψ_n is localized in the PAW sphere, the quantity

 $M = \langle \Psi_n | A | \Psi_m \rangle$ is to be calculated only in the sphere, in which $\tilde{\Psi} = \sum_i \langle p_i | \tilde{\Psi} \rangle \tilde{\phi}_i$ if the partial wave basis is complete.

In this case, $M \approx \sum_{i,j} \langle \widetilde{\Psi}_n | p_i \rangle \langle \phi_i | A | \phi_j \rangle \langle p_j | \widetilde{\Psi}_m \rangle$

Examples: Core level absorption, LDA+U (localized operator)

The key quantity is: $\langle \tilde{\Psi} | p_i \rangle$ It can be calculated calling ctocproj.F90, in outsofcv.F90 for instance

You can easily develop in the PAW framework !

The PAW method

APPROXIMATIONS :

- Frozen core approximation
- The partial wave basis is truncated
- The plane wave basis is truncated

ADVANTAGES :

- Total density of the system is computed \succ no transferability problem
- Plane wave cutoff equivalent to ultra-soft pseudopotentials (no norm-conserving constraint)
- The PAW method is as précise as an all electron method. Convergency can be controlled.
- It can be shown that ultrasoft and norm-conserving methods are approximations of the PAW method.

ATOMIC DATA:

We need the following atomic data:

 $\{\phi_i\}, \{\widetilde{\phi}_i\}, \{\widetilde{p}_i\}, \{\widetilde{p}_i\}, V_H[\widetilde{n}_{Zc}], n_c, \widetilde{n}_c$

ced

USPP

Ultrasoft pseudopotential generator
Written by David Vanderbilt *Rutgers, The State University of New Jersey*Add a "plugin" into USPP...
Only have to use USPP to produce a file for Abinit

Fully documented by D. Vanderbilt...
Set of input files downloadable on D. Vanderbilt's site...

Downloadable on abinit.org

AtomPAW

PAW atomic data generator for "PWPAW"

Written by Natalie Holzwarth and coworkers

Dept. of Physics, Wake Forest University

Launch AtomPAW and a converter separately... *Atompaw2abinit*

.Fully documented by M.Torrent

Downloadable on abinit.org

New versions have been updated

Atomic data validation

Accuracy

The PAW calculation must give the same physical results as a reference all electron calculation

Efficiency

The plane wave basis must be as minimal as possible

Good atomic data are always a compromise between accuracy and efficiency

12

Nickel 28.	
GGA-PBE	oggrid 1500 scalarrelativistic pointnucleus
44300	! Up to 4s, 4p and 3d
3 2 9.0! Ele	ctronic configuration 3d ⁹ 4s ¹ 4p ⁰
4 0 1.0	
4 1 0.0	
000	
с	!1s
с	! 2s
с	! 3s
v	! 4s valence
с	! 2p
с	! 3p
v	! 4p valence
v	! 3d valence
2	! Basis contains s, p and d partial-waves
2.3 2.3 1.1	2.2 ! rpaw=2.3, rshape=2.3, rveff=1.1, rcore=2.2
У	! Additional s partial-wave
4.	! at Eref=4.0 Ha
n	
У	! Additional p partial-wave
4.	! at Eref=4.0 Ha
n	
У	! Additional d partial-wave
2.5	! at Eref=2.5 Ha
n	
custom rrk	j grahamschmidtortho sinc ! RRKJ PW + sinc shape func
Bessel	! Simple Bessel Vloc
2.3	! Matching radius for Phi1 (I=0)
2.3	! Matching radius for Phi2 (I=0)
2.3	! Matching radius for Phi3 (I=1)
2.3	! Matching radius for Phi4 (I=1)
2.3	! Matching radius for Phi5 (I=2)
2.3	! Matching radius for Phi6 (I=2)
0	! END

Input file for ATOMPAW

Parameters adjustment...

... can be tedious

100

Conclusion

PAW atomic data generation needs a **trial-error** type of adjustment

Each set of data must be tested in the context of each

- Two types of atomic data now available
- Abinit's user can download/generate atomic data
- Fully documented on Abinit's web site

To be continued...

- Evaluate accuracy and performance for elements of the periodic table
- XML "universal" format for PAW atomic data
- Spin orbit ?