

Specifications for the Nanoquanta-ETSF NetCDF file format

V. Olevano, M. Verstraete, C. Freysoldt, Y. Pouillon, X. Gonze, A. Cucca and D. Caliste

File -etsf.nc

- It can contain:
 - Crystallographic Data
 - Density
 - Potentials
 - Electronic Structure (Wavefunctions + Energies)
- Purpose:
 - Exchange between DFT codes
 - DFT and else (postprocessing on density, TDDFT, BSE, GW, Quantum Transport)
 - Even between ab initio codes and non ab initio ones (Tight Binding, DMFT)

Why NetCDF?

- **High Portability**: little/big-endian problem free; machine precision free;
- Versatile: readable from Fortran, C, Java, Python, Perl, ...
- Efficiency (or better, efficiency in perspective): however, first save human time, and then computer;
- Incremental: you can add further data and the old reading interfaces still work -> High backcompatibility.

-etsf.nc characteristics

- It can be **Compact**: all the informations (chrystallographic data, density, potentials and wavefunctions) about a system in a **single file** (sparse information in many files, in many directories, usually leads to human errors in managing).
- But you can also split information however you want -> parallelization (VO & MV do not advise)
- Versatility and Redundancy: You can write only the **mandatory data** (advised), or also the **optional**
- If your code does not contain enough physics to write a mandatory data, <u>we however encourage you to write a</u> <u>-etsf.nc file</u> by using the alternative optional data. This will rely on the reading code; hoping that it will contain enough physics to anyway interpret your information.

NetCDF philosophy: writing

use netcdf

nf90_create("foo-etsf.nc",nf90_clobber,ncid)

! opening

nf90_put_att(ncid,nf90_global,"title","Silicon bulk, Si 1s corehole, etc.") ! global attribute

nf90_def_dim(ncid,"number_of_kpoints",4,nkdimid)

nf90_def_var(ncid,"kpoint_weights",nf90_double, (/nkdimid /), kwid) ! Variables decl.

nf90_enddef(ncid)

nf90_put_var(ncid,kwid, (0.125, 0.25, 0.25, 0.375))

! write Variables

! Dimensions decl.

nf90_close(ncid)

! closing

NetCDF philosophy: reading

use netcdf

nf90_open("foo-etsf.nc",nf90_nowrite,ncid)

! opening

s= nf90_inquire_attribute(ncid,nf90_global,"title",len=tl)	! inquire global attribute
if(s /= nf90_noerr) nf90_get_attribute(ncid,nf90_global,"title",filetitle)	! get global attribute

s= nf90_inq_dimid(ncid,"number_of_kpoints",nkdimid)	! check if dimension exists
if(s/=nf90_noerr) nf90_inquire_dimension(ncid,nkdimid,len=nk)	! read dimension

s= nf90_inq_varid(ncid,"reduced_coordinates_of_kpoint",kvid) ! check if Variable exists
if(s/=nf90_noerr) nf90_get_var(ncid,kvid,kpoints) ! read Variable
else try_to_manage_if_this_does_not_exist(....) ! or try to read other ...

nf90_close(ncid)

! closing

Hence, if you caught the right philosophy behind NetCDF,

what is correct to do and what not

- Once agreed on the tags' names, never change them! Nor change the rank and the order of the dimensions in arrays (neither for aesthetic reasons nor alphabetic or whatever) -> lost of backcompatibility.
- You can write data in the order you wish!
- If a mandatory data doesn't apply for an unpredicted reason, better not to write it than to invent a new convention for it. -> rely on the reading code escape capability.
- You can add further data/tags, it does not interfere with the others. But for every code being able to use them, you need to make them agreed in the standards.

.etsf-nc structure

Intro

• **General Info** (NetCDF global attributes):

- title, history

• Dimensions:

- number_of_atom_species, number_of_atoms
- number_of_symmetry_operations
- max_number_of_states, number_of_kpoints, max_number_of_coefficients
- number_of_spins, numbers_of_spinor_components, number_of_components
- number_of_grid_points_vector1, ...

Data: Crystallographic File

• Crystal Structure:

- primitive_vectors
- reduced_symmetry_matrices, reduced_symmetry_translations
- atom_species, atomic_numbers, atom_species_names, chemical_symbols
- reduced_atom_positions
- space_group

Data: Density File or Potential File

• Density:

 density[number_of_components, number_of_grid_points_vector1, ..., real_or_complex_density]

• Potentials:

- exchange_potential[number_of_components, number_of_grid_points_vector1, ..., real_or_complex_potential]
- correlation_potential[...]
- exchange_correlation_potential[...]

Data: Electronic Structure

• Brillouin Zone:

- reduced_coordinates_of_kpoints[number_of_kpoints,number_of_reduced_dimensions]
- kpoints_weights[number_of_kpoints]

• Energies, Occupations:

- number_of_states[number_of_spins,number_of_kpoints]
 - k_dependent (flag, attribute)
- eigenvalues[number_of_spins,number_of_kpoints,max_number_of_states]
- occupations[number_of_spins,number_of_kpoints,max_number_of_states]

Wavefunctions:

- basis_set (= "plane_waves" or ...)
- number_of_coefficients[number_of_kpoints]
- reduced_coordinates_of_plane_waves
 [number_of_kpoints,max_number_of_coefficients,number_of_reduced_dimensions]
- coefficients_of_wavefunctions[...]

Real Space Wavefunctions:

real_space_wavefunctions[...]

Data: Optional

• Atomic Data:

valence_charges, pseudopotential_types, number_of_electrons

• Brillouin Zone:

kpoint_grid_shift, kpoint_grid_vectors, monkhorst_pack_folding

• Convergency:

- kinetic_energy_cutoff, smearing_width, smearing_scheme, fermi_energy
- exchange_functional, correlation_functional

Data: Electronic Structure

• GW/BSE/TDDFT data:

- gw_corrections[...]
- kb_formfactors[...]

Asked Questions and Open Points

• Dielectric Function (Screening)?

.etsf-nc at present

- -etsf.nc f90 interface (VO & Matthieu Verstraete) + Damien Caliste interface.
- kss2etsf conversion utility from ABINIT
 KSS format to .etsf-nc;
- DP (TDDFT) code used to test ETSF NetCDF interface: it works fine!
- EXC (BSE) can also be released with a NetCDF interface, but we would like to solve the last point, the screening -> agreement with the community.

.etsf-nc in future

- -etsf.nc: integration within ABINIT, DP, EXC, STGW, SPHINGx (?), WANT.
- Converter NetCDF ETSF <-> IOTK Espresso?
- What about VASP, Siesta, Espresso?