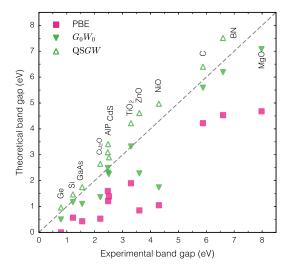
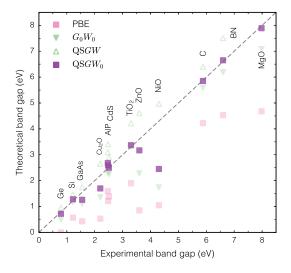

Accurate band gaps of solids via efficient vertex corrections in *GW*

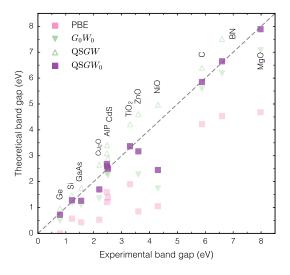
Wei CHEN CSEA, Ecole Polytechnique Fédérale de Lausanne (EPFL) NAPS, Université catholique de Louvain


ABINIT Developer Workshop 2017, Fréjus

Band-gap problem with GW


• $G_0 W_0$ @PBE \rightarrow underestimated E_g .

Band-gap problem with GW



- $G_0 W_0$ @PBE \rightarrow underestimated E_g .
- Quasiparticle self-consistent QSGW \rightarrow too large E_g , underscreened W.

Band-gap problem with GW

- $G_0 W_0$ @PBE \rightarrow underestimated E_g .
- Quasiparticle self-consistent QSGW \rightarrow too large E_g , underscreened W.
- $QSGW_0@PBE \rightarrow good E_g$, but *not* always.

- $G_0 W_0$ @PBE \rightarrow underestimated E_g .
- Quasiparticle self-consistent QSGW \rightarrow too large E_g , underscreened W.
- $QSGW_0@PBE \rightarrow good E_g$, but *not* always.
- Vertex corections have to be included in *W* to go beyond RPA

$$W = \varepsilon^{-1}v$$

$$\varepsilon^{-1} = 1 + v\chi$$

$$\chi = \chi^{0} + \chi^{0}(v + f_{xc})\chi$$

• NANOQUANTA kernel^a

 $f_{xc}(34) = P_0^{-1}(36)G(65)G(5'6)W(55')G(57)G(75')P_0^{-1}(74)$

as accurate as Bethe-Salpeter equation; but computationally formidable.

• Long-range contribution (LRC) kernel^b

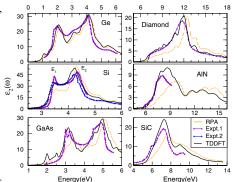
$$f_{xc}^{\text{LRC}} = -(a + b\omega^2)/q^2$$

surprisingly good for semiconductors; cheap; but empirical; not sufficient for insulators.

· Adiabatic local density approximation (ALDA) kernel

$$f_{xc}^{\text{ALDA}} = \frac{\partial V_{xc}^{\text{LDA}}}{\partial \rho}$$

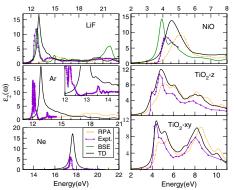
ineffective for solids (missing long-range behavior).

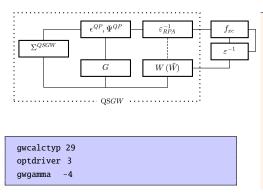

^a See e.g., Reining et al. (2002), Sottile, Olevano, and Reining (2003), Adragna, Del Sole, and Marini (2003), Marini, Del Sole, and Rubio (2003), and Bruneval et al. (2005).

^bReining et al. 2002; Botti et al. 2005.

• (static) **BOOTSTRAP** kernel (Sharma, J. Dewhurst, et al. 2011)

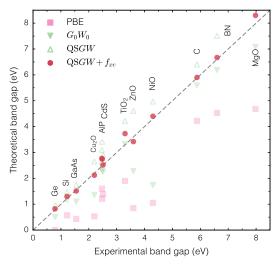
$$\begin{split} f_{xc,\mathbf{GG'}}^{\text{boot}}(\mathbf{q},\omega) &= \frac{\varepsilon_{\mathbf{GG'}}^{-1}(\mathbf{q},0)v_{\mathbf{G'}}(\mathbf{q})}{1-\varepsilon_{\mathbf{00}}^{\mathrm{RPA}}(\mathbf{q},0)} \\ &= \frac{\varepsilon_{\mathbf{GG'}}^{-1}(\mathbf{q},0)v_{\mathbf{G'}}(\mathbf{q})}{\chi_{\mathbf{00}}(\mathbf{q},0)v_{\mathbf{G'}}(\mathbf{q})} \end{split}$$


- \checkmark correct $1/q^2$ as $q \to 0$
- \checkmark small overhead to RPA
- \checkmark no empirical parameters
- It works well for absorption spectra of semiconductors.


• (static) **BOOTSTRAP** kernel (Sharma, J. Dewhurst, et al. 2011)

$$\begin{split} f_{xc,\mathbf{GG'}}^{\text{boot}}(\mathbf{q},\omega) &= \frac{\varepsilon_{\mathbf{GG'}}^{-1}(\mathbf{q},0)v_{\mathbf{G'}}(\mathbf{q})}{1-\varepsilon_{\mathbf{00}}^{\mathrm{RPA}}(\mathbf{q},0)} \\ &= \frac{\varepsilon_{\mathbf{GG'}}^{-1}(\mathbf{q},0)v_{\mathbf{G'}}(\mathbf{q})}{\chi_{\mathbf{00}}(\mathbf{q},0)v_{\mathbf{G'}}(\mathbf{q})} \end{split}$$

- \checkmark correct $1/q^2$ as $q \to 0$
- \checkmark small overhead to RPA
- \checkmark no empirical parameters
- It works well for absorption spectra of semiconductors.
- *Not* so well for wide-gap insulators (Rigamonti et al. 2015).



*Note that LiF and Ar were not converged here.

src/70_gw/m_screening.F90

chi00_head = chi0(1,1,1)*vc_sqrt(1)**2
nstep=50 / iteration steps
do istep=1,nstep
 call atddft_symepsm1(io=1,...) /static
 converged = (conv_err <= tol4)
 if (converged) then
 call atddft_symepsm1(...)
 else if (istep < nstep) then
 chi0_tmp = chi0(:,:,1)
 vfxc_boot = chi0(:,:,1)/chi00_head
 vfxc_boot = vc_sqrt*vc_sqrt*vfxc_boot
 end if
end do</pre>

- Mean absolute error (eV) $QSGW+f_{xc}$ **0.13** QSGW 0.62 G_0W_0 0.45
- Highly accurate for a wide variety of materials:
 - \checkmark sp semiconductor
 - ✓ wide-gap insulator
 - ✓ TM compound
 - ✓ correlated oxide

WC and AP, PRB 92, 041115(R) (2015).

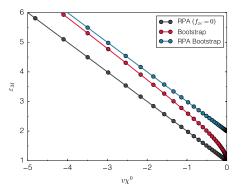
BOOTSTRAP VS NANOQUANTA

	present ^a	nanoquanta ^b	Diff.
Si	-0.17	-0.17	0.00
SiC	-0.38	-0.35	0.03
С	-0.50	-0.39	0.11
AlP	-0.33	-0.33	0.00
Ge	-0.14	-0.14	0.00
GaAs	-0.25	-0.23	0.01
CdS	-0.67	-0.48	0.19
BN	-0.84	-0.55	0.29
MgO	-0.99	-1.04	0.06

Band-gap renormalization (eV) due to vertex corrections.

• BSE-like accuracy at a *marginal* computational cost.

^aChen and Pasquarello 2015.


^bShishkin, Marsman, and Kresse 2007.

 RPA-BOOTSTRAP (Rigamonti et al. 2015, later Berger 2015)

$$f_{xc} = \frac{1}{\epsilon_{\rm M}^{\rm RPA} \bar{\chi}^{\rm RPA}}$$
$$\bar{\chi}^{\rm RPA} = \chi^0 + \chi^0 \bar{\nu} \bar{\chi}^{\rm RPA}, \bar{\nu}_{\rm G=0} = 0$$

- Keeping only the **G** = 0, RPA-BOOTSTRAP is essentially the one-shot version of the original BOOTSTRAP kernel.
- Head-only BOOTSTRAP (no local fields)

$$f_{xc,00} = \frac{1}{2} \left(\frac{2}{\chi_{00}^0} - v_0 \right) + \frac{1}{2} \sqrt{\left(\frac{2}{\chi_{00}^0} - v_0 \right)^2 - \frac{4}{(\chi_{00}^0)^2}}$$

•
$$\epsilon_{\rm M}^{\rm RPA} = 1 - v\chi^0$$

- $\epsilon_{\mathrm{M}}^{\mathrm{rpa-boot}} = 2 v\chi^0 = 1 + \epsilon_{\mathrm{M}}^{\mathrm{rpa}}$
- $\epsilon_{\rm M}^{\rm BOOT}$ inbetween

• RPA-BOOTSTRAP (Rigamonti et al. 2015, later Berger 2015)

$$\begin{split} f_{xc} &= \frac{1}{\epsilon_{\mathrm{M}}^{\mathrm{RPA}} \bar{\chi}^{\mathrm{RPA}}} \\ \bar{\chi}^{\mathrm{RPA}} &= \chi^0 + \chi^0 \bar{v} \bar{\chi}^{\mathrm{RPA}}, \, \bar{v}_{\mathbf{G}=0} = 0 \end{split}$$

- Keeping only the **G** = 0, RPA-BOOTSTRAP is essentially the one-shot version of the original BOOTSTRAP kernel.
- Head-only BOOTSTRAP (no local fields)

$$f_{xc,00} = \frac{1}{2} \left(\frac{2}{\chi_{00}^0} - v_0 \right) + \frac{1}{2} \sqrt{\left(\frac{2}{\chi_{00}^0} - v_0 \right)^2 - \frac{4}{(\chi_{00}^0)^2}}$$

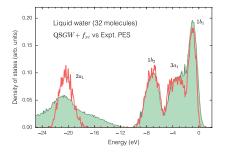
Rigamonti: "Once the calculations are settled, the results of the BO are hence disappointing." (Rigamonti et al. 2015)

Sharma: "...these claims are overstated and that these authors were unfortunately misled by focusing on only three materials: Si, Ar, and LiF. ...the RBO kernel significantly worsens the macroscopic dielectric constant."

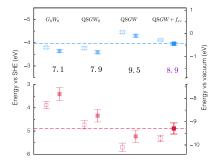
(Sharma, J. K. Dewhurst, et al. 2016)

Rigamonti: "The comment by S. Sharma and coworkers does not contain benchmarks or criticism that are pertinent to our work." (Rigamonti et al. 2016)

Showdown


	f_{xc}	$f_{xc,0}$	$f_{xc,0}^{\text{RPA}}$	Expt.+ZPR
AlP	2.73	2.82	2.75	2.47
С	5.94	6.00	5.86	5.85
CaS	4.83	5.00	4.80	4.43
CdS	2.66	2.87	2.73	2.48
CoO	2.78	3.47	3.30	2.5
InP	1.55	1.66	1.60	1.47
NiO	3.94	4.53	4.40	4.3
Si	1.30	1.34	1.31	1.22
SiC	2.45	2.48	2.43	2.40
SnO_2	3.55	4.01	3.82	3.6
TiO ₂	3.74	3.94	3.84	3.3
ZnSe	2.95	3.25	3.11	2.87

Band gaps obtained with various BOOTSTRAP kernels

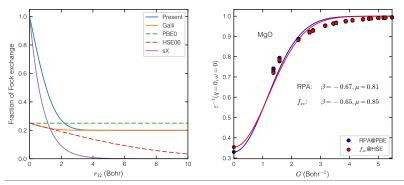

	f_{xc}	$f_{xc,0}$	$f_{xc,0}^{\text{RPA}}$	Expt.+ZPR
Ar	-	14.00	13.29	14.30
BN	6.60	6.72	6.50	6.6
CaO	7.11	7.30	6.94	7.0
LiCl	9.70	9.99	9.57	9.4
LiF	-	14.51	13.76	14.6
MgO	7.88	8.34	7.78	8.12
NaCl	8.84	9.14	8.55	8.5, 8.9
NaF	-	12.17	11.26	11.5
Ne	-	20.11	18.75	21.7

• The original kernel is most consistent.

- Local fields in *f_{xc}* affect band gaps by 0.1-0.4 eV.
- RPA-BOOTSTRAP strongly underestimates the band gap for "ultra" wide-gap materials.

"*ab initio* electronic structure of water" (Chen, Ambrosio, et al. 2016)

VBM and CBM of water (filled: w/ nuclear quantum effect).


• $E_g = 8.9 \text{ eV}$, vs experimentally determined 8.7 ± 0.6 eV (Bernas, Ferradini, and Jay-Gerin 1997).

Applications: Nonempirical hybrid functionals

- global
- $v_x = \alpha \Sigma_x + (1 \alpha) v_x^{\text{KS}}$ $\alpha = 1/\epsilon_{\infty}$

• range-separated

$$\begin{split} v_x &= \left[\alpha + \beta \mathrm{erf}(\mu r_{12})\right] \Sigma_x - \beta \mathrm{erf}(\mu r_{12}) v_x^{\mathrm{KS}} \\ \alpha &= 1, \beta = \epsilon_\infty^{-1} - 1 \\ \varepsilon^{-1} \to 1 + (\epsilon_\infty^{-1} - 1) \exp(-G^2/4\mu) \end{split}$$

16

Applications: Nonempirical hybrid functionals

	E_g (eV)		ϵ_{∞}	
	Hybrid	Expt.	Hybrid	Expt.
AlAs	2.22	2.24	8.13	8.16
AlP	2.52	2.51	7.16	7.54
С	5.61	5.85	5.47	5.70
CdS	2.95	2.48	5.28	5.4
CdSe	1.89	1.84	7.07	6.2
Cu_2O	2.49	2.12	6.36	6.46
GaAs	1.12	1.52	13.98	10.58
GaN	3.50	3.50	5.25	5.30
GaP	2.42	2.35	9.24	9.11
Ge	0.60	0.74	15.38	15.9
InP	1.55	1.42	9.81	9.61
Si	1.14	1.22	11.35	11.9
SiC	2.47	2.40	6.38	6.52
ZnO	3.54	3.4	4.15	3.74
ZnSe	2.68	2.72	6.33	5.9

	E_g (eV)		ϵ_{∞}	
	Hybrid	Expt.	Hybrid	Expt.
Al ₂ O ₃	9.51	8.8	3.18	3.10
AlN	6.26	6.28	4.18	4.18
Ar	14.67	14.3	1.76	1.66
BN	6.56	6.6	4.39	4.50
CaO	7.17	7.0	3.37	3.33
LiCl	9.89	9.40	2.78	2.70
LiF	15.56	14.60	2.15	1.90
MgO	8.19	8.12	3.08	2.96
NaC1	9.10	8.9	2.38	2.40
Ne	22.51	21.7	1.41	1.23

(WIP)

- QSGW with BOOTSTRAP vertex corrections is reliable for band-gap predictions.
- NANOQUANTA accuracy achieved at (nearly) no overhead w.r.t. RPA.
- "Ultra" wide band-gap insulator are still a challenge for BOOTSTRAP.
- Available in Abinit v8.0+ (gwgamma).

References

- Adragna, Gianni, Rodolfo Del Sole, and Andrea Marini (2003). "Ab initio calculation of the exchange-correlation kernel in extended systems". In: Phys. Rev. B 68 (16), p. 165108. doi: 10.1103/PhysRevB.68.165108.
- Berger, J. A. (2015). "Fully Parameter-Free Calculation of Optical Spectra for Insulators, Semiconductors, and Metals from a Simple Polarization Functional". In: Phys. Rev. Lett. 115 (13), p. 137402. DOI: 10.1103/PhysRevLett.115.137402.
- Bernas, Annette, Christiane Ferradini, and Jean-Paul Jay-Gerin (1997). "On the electronic structure of liquid water: Facts and reflections". In: Chem. Phys. 222.2-3, pp. 151–160. DOI: 10.1016/S0301-0104(97)00213-9.
- Botti, Silvana et al. (2005). "Energy dependence of the exchange-correlation kernel of time-dependent density functional theory: A simple model for solids". In: Phys. Rev. B 72 (12), p. 125203. doi: 10.1103/PhysRevB.72.125203.
- Bruneval, Fabien et al. (2005). "Many-Body Perturbation Theory Using the Density-Functional Concept: Beyond the GW Approximation". In: Phys. Rev. Lett. 94 (18), p. 186402. doi: 10.1103/PhysRevLett.94.186402.
- Chen, Wei, Francesco Ambrosio, et al. (2016). "Ab initio". In: Phys. Rev. Lett. 117 (18), p. 186401. DOI: 10.1103/PhysRevLett.117.186401.
- Chen, Wei and Alfredo Pasquarello (2015). "Accurate band gaps of extended systems via efficient vertex corrections in *GW*". In: *Phys. Rev. B* 92 (4), p. 041115. DOI: 10.1103/PhysRevB.92.041115.
- Marini, Andrea, Rodolfo Del Sole, and Angel Rubio (2003). "Bound Excitons in Time-Dependent Density-Functional Theory: Optical and Energy-Loss Spectra". In: Phys. Rev. Lett. 91 (25), p. 256402. doi: 10.1103/PhysRevLett.91.256402.
- Reining, Lucia et al. (2002). "Excitonic Effects in Solids Described by Time-Dependent Density-Functional Theory". In: Phys. Rev. Lett. 88 (6), p. 066404. DOI: 10.1103/PhysRevLett.88.066404.
- Rigamonti, Santiago et al. (2015). "Estimating Excitonic Effects in the Absorption Spectra of Solids: Problems and Insight from a Guided Iteration Scheme". In: Phys. Rev. Lett. 114 (14), p. 146402. DOI: 10.1103/PhysRevLett.114.146402.
- (2016). "Rigamonti et al. Reply:" in: Phys. Rev. Lett. 117 (15), p. 159702. DOI: 10.1103/PhysRevLett.117.159702.
- Sharma, S., J. K. Dewhurst, et al. (2016). "Comment on "Estimating Excitonic Effects in the Absorption Spectra of Solids: Problems and Insight from a Guided Iteration Scheme". In: Phys. Rev. Lett. 117 (15), p. 159701. doi: 10.1103/PhysRevLett.117.159701.
- Sharma, S., J. Dewhurst, et al. (2011). "Bootstrap Approximation for the Exchange-Correlation Kernel of Time-Dependent Density-Functional Theory". In: Phys. Rev. Lett. 107 (18), p. 186401. doi: 10.1103/PhysRevLett.107.186401.

- Shishkin, M., M. Marsman, and G. Kresse (2007). "Accurate Quasiparticle Spectra from Self-Consistent GW Calculations with Vertex Corrections". In: Phys. Rev. Lett. 99 (24), p. 246403. doi: 10.1103/PhysRevLett.99.246403.
- Sottile, Francesco, Valerio Olevano, and Lucia Reining (2003). "Parameter-Free Calculation of Response Functions in Time-Dependent Density-Functional Theory". In: *Phys. Rev. Lett.* 91 (5), p. 056402. doi: 10.1103/PhysRevLett.91.056402.