
Python ecosystem for scientific
computing with ABINIT: challenges

and opportunities

M. Giantomassi and the AbiPy group

Frejus, May 9, 2017

• Python package for:
◆ generating input files automatically
◆ post-processing results stored in netcdf files
◆ creating and executing workflows (relaxations, phonons, GW, BSE…)

• Why Python?
◆ relatively easy to use and to learn
◆ can implement logic to drive high-performance/high-throughput jobs
◆ great support for science (numpy, scipy, pandas, matplotlib…)
◆ interactive environment (ipython, jupyter notebooks, GUIs)
◆ pymatgen ecosystem and materials project database …

http://pypi.python.org/pypi/pymatgen

◆ Classes for the representation of Molecules and Structures
◆ Structure manipulation
◆ CIF file and XYZ format support
◆ IO capabilities to manipulate many VASP and ABINIT input and output files
◆ Tools to generate and view compositional and grand canonical phase diagrams
◆ Electronic structure analyses
◆ Integration with the Materials Project Database (REST API)

http://pypi.python.org/pypi/pymatgen

pip or conda packages

$ abistruct.py
$ abiopen.py
$ abicomp.py
$ abirun.py
$ abidoc.py

40 examples (electrons, fatbands,
phonons, SCR.nc, WFK.nc, grunesein …

Explains how to connect AbiPy with Abinit

8 Jupyter notebooks with lessons http://abinit.github.io/abipy

http://abinit.github.io/abipy

• AbiPy communicates with Abinit via yaml docs and netcdf files:
◆ portable, can support “unconventional" machines e.g. BlueGeneQ
◆ yaml “events” found in the logfile trigger handlers (error-handlers, restart …)
◆ yaml docs with autoparal configurations, independent perturbations …
◆ netcdf results + metadata used to implement post-processing/worflows

• Tight integration between Python and Abinit:
◆ AbiPy invokes Abinit at run-time to get critical parameters
◆ Programmatic interface to optimize/modify resources (mem, cpus, timelimit)

at runtime to respond to software failure
◆ AbiPy pass runtime parameters to Abinit e.g —time-limit

AbiPy Design

Two different workflow models (with/without database)

Flow generation

Scheduling the flow on the cluster 
Error handling
Restart/increase resources … SLURM

PBS/Torque
Sun Grid Engine
IBM LoadLeveler

Storing results

Interactive analysis
and presentation of
results

PseudoDojo G0W0 for ~100 solids

HT DFPT
Raman with frozen

phonon and RPA/BSE

Michiel’s talk Michiel’s talk

Guido’s talk Xavier’s talk

Evolution of tasks in a single GW flow

time (a.u)

Tot #cpus used by a single GW flow

time (a.u)

• Web application to create and share documents with live code, equations, visualizations
and explanatory text

• Can produce rich output such as images, videos, LaTeX, and slides for talks!

• Make data analysis easier to share and reproduce. Keep detailed records of work

• Interactive widgets can be used to manipulate and visualize data in realtime

• Some researchers are even using notebooks as supplementary material (e.g. pseudo-dojo
paper)

$ abiopen.py FILE -nb

Results in
 the

database

ipython widgets

abipy code executed

in the notebook

• Improve the accessibility of these tools to researchers and end-users
• Test/validate the Abinit/AbiPy interface and the workflows to guarantee:

i) Backward compatibility, software quality, scientific reproducibility
ii) That new developments don’t break what is already available

• Make the python ecosystem coexist with the HPC software stack

Abinit (HPC libraries) Abipy + Pymatgen
(usually gcc-toolchain)

Vendor-provided HPC libraries are not always compatible with PyData stack
(unless you love `configure && make` all the libraries you need!)

https://computation.llnl.gov/newsroom/flexible-package-manager-hpc-software

A Flexible Package Manager for HPC Software
FRIDAY, FEBRUARY 19, 2016

High-performance computing (HPC) software is becoming increasingly complex,
quickly outpacing the capabilities of existing software management tools. To support
scientific applications, system administrators and developers frequently build, install, and
support different configurations of math and physics libraries and other software on
the same HPC system. Those applications are later rebuilt to fix bugs and to support new
operating system versions, compilers (special programs that turn programming language
into code that can be used by a computer’s processor), message passing interface (MPI)
versions, and other dependency libraries. Forcing all application teams to use a single,
standard software stack […] is infeasible, but managing many software
configurations and versions for all users on a single system is a time-consuming task
for supercomputing staff.

Existing tools can automate portions of this process, but they either cannot manage
installation of multiple versions and configurations, or they require numerous
configuration files for each software version, leading to organizational and maintenance
issues.

From:

https://computation.llnl.gov/newsroom/flexible-package-manager-hpc-software

https://github.com/llnl/spack

• Uses RPATH linking (each package knows where to
find its dependencies)

• $ spack activate abinit (abinit+hdf5@8.2.2)

• Handle multiple versions via modules
• Module load abinit_version_gcc-toolchain

https://github.com/hpcugent/easybuild

• Recipes for Abinit/AbiPy are already available
• The Abinit test farm could use these tools to extend the set of tests and/or keep an

history of the different builds
• What about desktop computers? What if I want to have full control of my software

stack without having to install these HPC tools?

★ Support for multiple versions and configurations of software
★ Installing a new version does not break existing installations, many configurations can coexist

https://github.com/llnl/spack
https://github.com/hpcugent/easybuild

ANACONDA
• Package manager + environment manager (conda)
• Python distribution and collection of over 720 open source packages

https://docs.continuum.io/anaconda

CONDA
• Created for Python programs, but can package and distribute any software
• Keeps track of the dependencies between packages and platforms
• A conda environment is a directory that contains a specific collection of conda

packages that you have installed.
• You can easily activate or deactivate (switch between) these environments.
• Conda packages are downloaded from remote channels, which are simply

URLs to directories containing conda packages

https://docs.continuum.io/anaconda

http://chdoig.github.io/pydata2015-dallas-conda

http://chdoig.github.io/pydata2015-dallas-conda

◆ Install abinit from scratch in 5 steps (see https://github.com/abinit/abiconda)
◆ Linux-64 and Osx-64 (sequential or parallel version)
◆ Can be used for schools and tutorials (not recommended for HPC)
◆ Cornerstone of the continuous integration infrastructure used by AbiPy …

https://github.com/abinit/abiconda

◆ Testing scientific software has never been easy (roundoff errors, parallelism …)
◆ Testing frameworks for automatic calculations is even more complicated:

➡ Lots of “futures”
➡ python code assumes a well-defined “response protocol” (output files in a

given format, error messages …)
➡ In principle one should validate the code in a typical production env

(databases, resource managers, MPI execution in “exotic” architectures …)

◆ 82% coverage
◆ abinit8.2.2 from conda vs Abipy@github:

Level1: unit tests and CI

✓validate input files
✓execute small workflows

https://travis-ci.org/abinit/abipy/builds/229721282?utm_source=github_status&utm_medium=notification

Level2: integration with other python packages
and software deployment

abiconda-tests:

Goals:
• github repository to periodically test

software integration
• pip/conda/github-repos with

abinit8.2.2 binary from abinit channel

Next step: monitor integration between
Abinit@gitlab and AbiPy-stable

Goals:

‣ Buildbot slave to run AbiPy tests with Abinit-dev
when merge-request is opened on gitlab

‣ Detect possible regressions or incompatibilities
before we go in production

➡ Scientific code must be allowed to change and evolve to tackle new problems
➡ But now there’s an entire ecosystem around Abinit and big changes must be

rationalised and planned in advance (e.g. Abinit7 —> Abinit8)

Thank your for your attention

◆ pseudo_dojo: python package providing pseudos/workflows for tests
◆ abiconfig: configuration files for clusters
◆ abiconda: recipes to build abinit/abipy (matsci.sh provides pymatgen packages)
◆ abiflows: Fireworks workflows
◆ abinit_issues:

