Precise effective masses from Density Functional Perturbation Theory

J. Laflamme Janssen, Y. Gillet, S. Poncé, A. Martin, M. Torrent and X. Gonze *Université catholique de Louvain, Belgium & CEA, DAM DIF Arpajon, France*

J. Laflamme-Janssen et al, Phys. Rev. B93, 205147 (2016)

Motivation

UCL

Université

catholique

Effective mass = key concept in understanding

Mobility, thermoelectric properties, magnetic response ...

Example : search for Transparent Conducting Oxides (TCOs)

(for transparent electronics)

n-type TCOs ubiquitous in current technologies

by contrast, p-type TCOs are lagging behind

- best n-type mobilities 100 cm²/(V.s)
- best p-type mobilities 10 cm²/(V.s)

Mobility directly linked to effective mass

$$\mu = \frac{e\tau}{m^*}$$

What is an effective mass ?

"Inertia" when reacting to force. F=ma. In quantum mechanics + periodic system : Force = "r" operator => d/dk Velocity = group velocity = $d\epsilon/dk$

How to compute effective mass tensor ?

$$\left(\underline{\underline{M}}_{n}^{-1}\right)^{\alpha\beta} = \frac{\partial^{2} \varepsilon_{n}}{\partial \underline{k}_{\alpha} \partial \underline{k}_{\beta}} \equiv \varepsilon_{n}^{\alpha\beta}$$

Finite difference ? "Usual" procedure ...

But precision?

Tensor characteristics when insufficient symmetry ? Degeneracy ?

DFPT approach

$$\left(\underline{\underline{M}}_{n}^{-1}\right)^{\alpha\beta} = \frac{\partial^{2} \varepsilon_{n}}{\partial \underline{k}_{\alpha} \partial \underline{k}_{\beta}} \equiv \varepsilon_{n}^{\alpha\beta} \qquad \alpha\beta = \{xx, yy, zz, xy, yz, xz\}$$
$$= \langle \psi_{n} | \hat{H} | \psi_{n} \rangle^{\alpha\beta}$$
$$= \langle \psi_{n} | \hat{H}^{\alpha\beta} | \psi_{n} \rangle$$
$$+ \left(\langle \psi_{n}^{\alpha} | \hat{H}^{\beta} | \psi_{n} \rangle + \alpha \leftrightarrow \beta \right) + cc.$$
$$+ \langle \psi_{n}^{\alpha} | \hat{H} - \varepsilon_{n} | \psi_{n}^{\beta} \rangle + cc.$$

First-order wavefunctions : Sternheimer equation...

$$(\hat{H} - \varepsilon_n) \psi_n^{\alpha} = (\hat{H}^{\alpha} - \varepsilon_n^{\alpha}) |\psi_n\rangle$$

1st and 2nd-order matrix elements

$$\begin{split} \langle \underline{G} | \hat{H}_{\underline{k}} | \underline{G}' \rangle &= \frac{(\underline{k} + \underline{G})^2}{2} \delta_{\underline{G}\underline{G}'} + V_{\underline{G} - \underline{G}'} + \tilde{V}_{\underline{k},\underline{G}\underline{G}'} \\ \text{DFT potential:} \quad \langle \underline{r} | \hat{V} | \underline{r}' \rangle &= V(\underline{r}) \delta(\underline{r} - \underline{r}') \\ \text{Pseudopotential:} \langle \underline{r} | \hat{V} | \underline{r}' \rangle &= \tilde{V}(\underline{r}, \underline{r}') \\ \langle \underline{G} | \widehat{H}_{\underline{k}}^{\alpha} | \underline{G}' \rangle &= (\underline{k} + \underline{G})_{\alpha} \, \delta_{\underline{G}\underline{G}'} + 0 + \tilde{V}_{\underline{k},\underline{G}\underline{G}'}^{\alpha} \\ \langle \underline{G} | \widehat{H}_{\underline{k}}^{\alpha} | \underline{G}' \rangle &= \delta_{\alpha\beta} \delta_{\underline{G}\underline{G}'} + 0 + \tilde{V}_{\underline{k},\underline{G}\underline{G}'}^{\alpha\beta} \\ \langle \underline{G} | \hat{V}_{\underline{k}} | \underline{G}' \rangle &= \sum_{ij} \langle \underline{k} + \underline{G} | p_i \rangle D_{ij} \langle p_j | \underline{k} + \underline{G}' \rangle \\ \langle \underline{k} + \underline{G} | p_i \rangle &\propto e^{i \widehat{Q} + \underline{G} \cdot \underline{r}} Y_{l_i m_i} \left(\frac{\underline{k} + \underline{G}}{\underline{k} + \underline{G}} \right) \int_{0}^{r_c} dr p_i(r) j_{l_i} (\underline{k} + \underline{G} | r) \end{split}$$

Degeneracy

For example, 3-fold degeneracy of top of valence band of silicon...

$$\left(\underline{\underline{M}}_{n}^{-1}\right)^{\alpha\beta} = \frac{\partial^{2} \varepsilon_{n}}{\partial \underline{k}_{\alpha} \partial \underline{k}_{\beta}} \equiv \varepsilon_{n}^{\alpha\beta} \qquad ?$$

Normally, one would try to diagonalize this quantity in degenerate subspace.

But there are 6 such tensors, that cannot be diagonalized simultaneously !

Solution (Luttinger & Kohn, Phys. Rev. 97, 869 (1955))

Compute a matrix of tensors !

 $\langle n | \hat{H}^{\alpha\beta} | n' \rangle \neq 0$

Then, the direction dependence is NOT tensorial.

$$\varepsilon_{nn'}(\underline{k}) \approx \frac{1}{2} \underline{k}^T \underline{\underline{M}}_{nn'}^{-1} \underline{k} = \frac{k^2}{2} \hat{k}(\theta, \phi)^T \underline{\underline{M}}_{nn'}^{-1} \hat{k}(\theta, \phi) = \frac{k^2}{2} M_{nn'}^{-1}(\theta, \phi)$$

For details see : J. Laflamme-Janssen et al, Phys. Rev. B93, 205147 (2016)

Tests

Direction	(100)	(111)	(110)
Band 2 FD order 8 DFPT DFPT-FD 8	-0.167 180 4 4 -0.167 180 4 0 -4E-8	-0.093 807 8 2 -0.093 807 8 0 -3E-8	-0.105 36 9 00 -0.105 36 8 95 -5E-8
Band 3 FD order 8 DFPT DFPT-FD 8	-0.257 803 79 -0.257 803 82 3E-8	-0.649 497 22 -0.649 497 35 1E-7	0.257 803 8 0 0.257 803 8 2 2E-8
Band 4 FD order 8 DFPT DFPT-FD 8	-0.257 803 82 -0.257 803 82 4E-9	-0.649 497 16 -0.649 497 35 2E-7	2.702 563 30 2.702 563 84 5E-7

Implementation characteristics

- Norm-conserving / PAW
- Spin-polarized
- Spin-orbit (only in PAW)

As usual : DFPT outperforms completely finite-differences in convenience & precision

- ABINIT v8.0
- Test case : v7#80, 81, 82
- Input variables : efmas_XXX

Tests / examples : silicon, graphane, antimony, all with and without spin-orbit coupling, see J. Laflamme-Janssen et al, Phys. Rev. B93, 205147 (2016)

