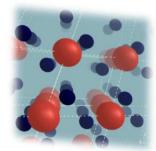

FROM RESEARCH TO INDUSTRY

8th International ABINIT Developer Workshop Fréjus, France, May 9-12, 2017



ADAPTING ABINIT TO NEW COMPUTING ARCHITECTURES

Marc Torrent, Jordan Bieder CEA, DAM, DIF, Bruyères-le-Châtel

www.cea.fr

ABINIT – SUPERCOMPUTERS, WHY?

Handling larger systems Simulate inhomogeneous systems Filli the gap with experiments

Decrease the « time to solution » Obtain longer trajectory Access to rare events

Include more complex theories Improve predictability Access to more complex observables **Target applications** for ABINIT

> 1000 to 20000 bands A few 100 000 plane waves

ABINIT – PARALLELISM, STATUS, 2016

- Message Passing Interface (MPI)
- Computational load distribution
 - Cells, k-pts, spins/spinors, atoms, bands, plane waves
 - Each level has its own parallel efficiency
- Distribution of data
 - Cells, k-pts, spins/spinors, atoms, bands, plane waves
 - Only collective communications used
- No computation/communication overlap optimization
 - OpenMP
 - All internal loops (low level)
 - Linear and Matrix Algebra, FFT

Bottlenecks for many-core architectures: ABINIT is memory or latency bound Communications, data locality, memory access

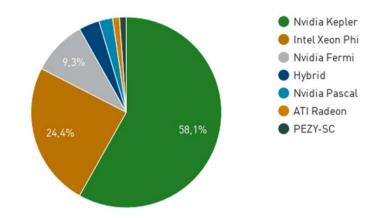
Vectorisation70% (lines)

New computing architectures

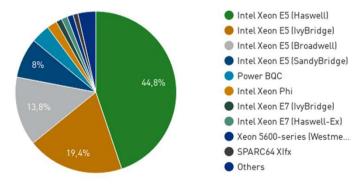
Issues

Adapting ABINIT – Strategy

Scalability Topology Coarse graining External libraries Vectorization Abstraction


DE LA RECHERCHE À L'INDUSTRIE

PRESENT (AND FUTURE) SUPERCOMPUTERS?


TOP 10 Sites for November 2016

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.456Hz, Sunway NRCPC	10,649,600	93,014.6	125,435.9 20	
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phu 31S1P NUDT	3,120,000	33,862.7	54,902.4 20	
3	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5 20	8,209 12
4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7 20	
5	DOE/SC/LBNL/NERSC United States	Cori - Cray XC40, <mark>Intel Xeon Phr</mark> 7250 68C 1.4GHz, Aries interconnect Cray Inc.	622,336	14,014.7	27,880.7 20	3,939 16
6	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS - PRIMERGY CX1640 M1. Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path Fujitsu	556,104	13,554.6	24,913.5 20	
7	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4 20	
8	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tests P100 Cray Inc.	206,720	9,779.0	15,988.0 20	1,312 16
9	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3 20	^{3,945} 12
10	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	301,056	8,100.9	11,078.9 20	4,233 15

Accelerator/CP Family System Share

Processor Generation System Share

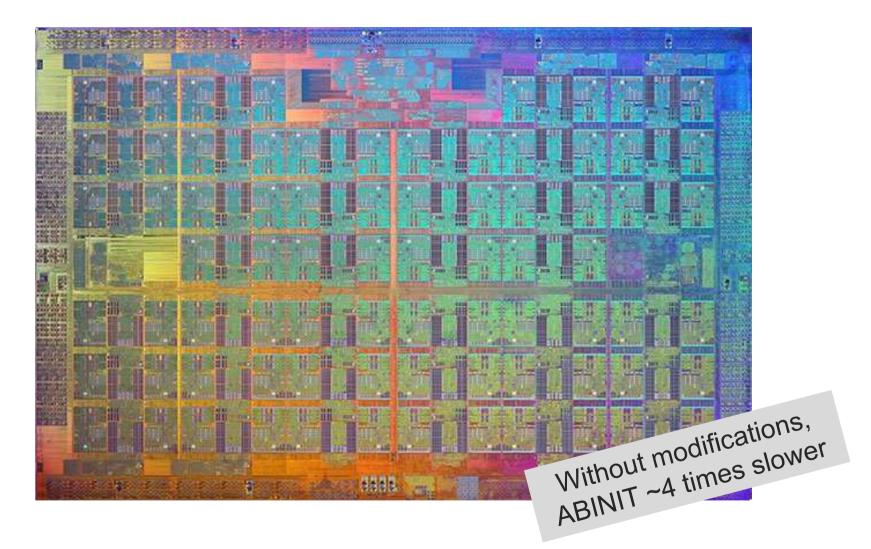
NEW COMPUTING ARCHITECTURES

- Intel Xeon Phi MIC (Many Integrated Core)
- Graphics Processing Units

Slower Computing Units... but many Energy saving, cooling Favor the redundant calculations on the storage

Shared memory... less « distributed » Concurrent Access issue Do not move/communicate data

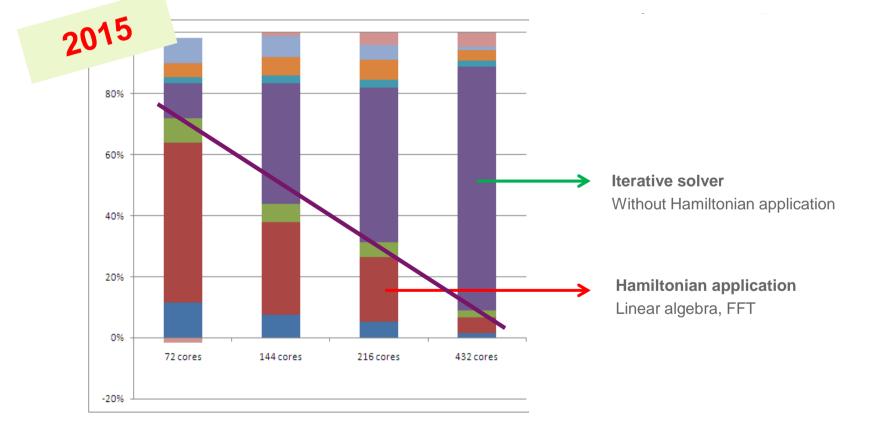
Vector Calculation Units Non deterministic « hardware » parallelization Code to make « vectorizable « (back to the 90')


Intel Xeon Phi – MIC (Many Integrated Core)

- **Several tens** of (slow) **processors**
- Hyperthreading : several threads per processor
- High vectorization performances AVX512= can process simultaneously 8 dp reals
- High Bandwith memory (16GB)
 Multi-channel DRAM
 Many channels to access the memory

MANY CORE ARCHITECTURES

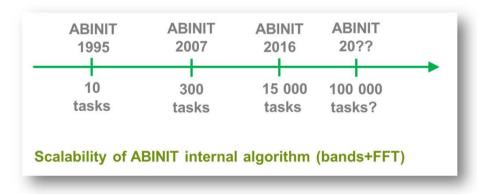
- 1. Improve the <u>scalability</u> of the internal algorithm *More calculation, less storage, less communications*
- 2. Adapt the code to the hardware topology
- 3. Efficiently use the <u>shared memory</u> (openMP) in « coarse grain » mode Give longer tasks to the elementary computing units Decrease the data movements
- **4.** <u>Externalize</u> the elementary operations Express the physics in terms of elementary operations Use vendor (or optimized) libraries
- 5. Make the code *vectorizable*
- 6. Add an *abstraction* layer Isolate low level optimized operations

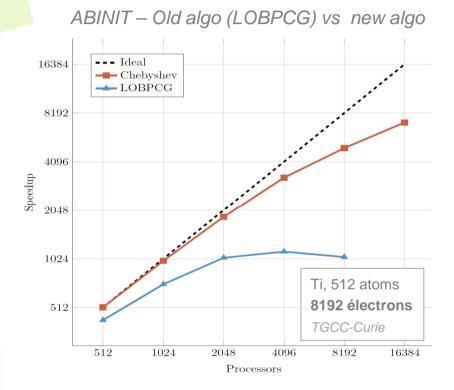

cea

1- INTERNAL ALGORITHM SCALABILITY

Repartition of time in in a ground-state calculation varying the number of band CPU cores (strong scaling)

TEST CASE


A vacancy in a 108 atoms cell (gold) Gamma k-point only, PAW Computation of total energy and forces



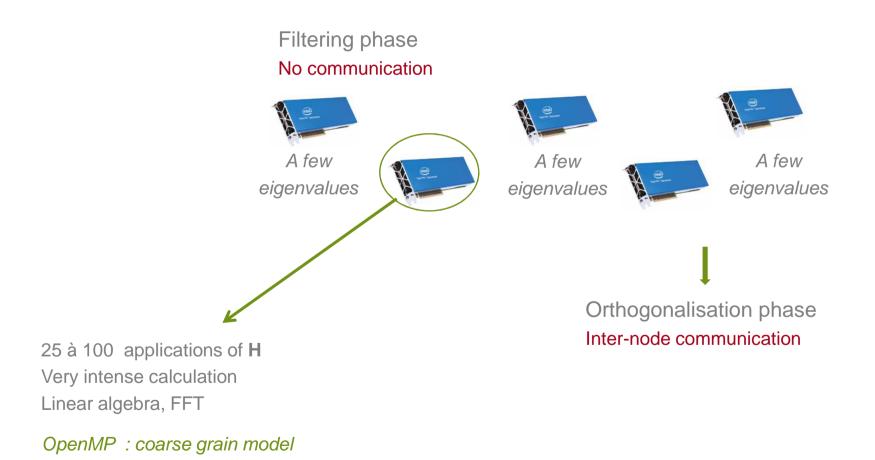
1- INTERNAL ALGORITHM SCALABILITY CHEBYSHEV FILTERING (ITERATIVE DIAGO)

New algorithm2016Chebyshev filtering2016An « old » algorithm modernizedThe eigenvalue spectrum is projected inthe area of interest

Levitt, Torrent. Comp. Phys. Comm. 187, 98 (2015)

2nd Bull-Fourier price 2016 (Atos – GENCI)

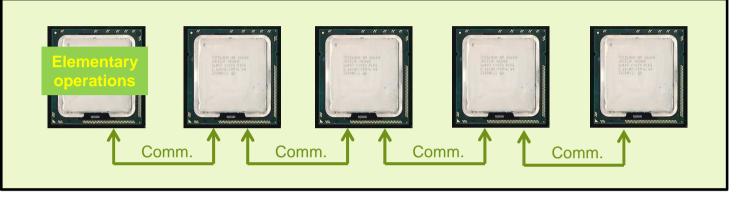
« Slicing » algorithm Based on Chebyshev filtering Schofield, Chelikowsky, Saad. Comp. Phys. Comm. 183, 497 (2012)

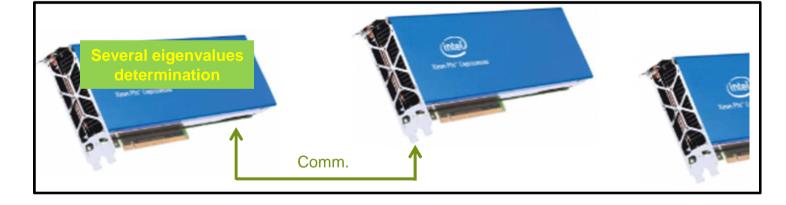

High order chebyshev filtering

The eigenvalue spectrum is projected around a small number of eigenvalues, using a high-order *Chebyshev* polynom.

- One problem per eigenvalue? 50 000 parallel tasks?
- Totally eliminate communications
- \rightarrow No more orthogonalization
- \rightarrow Price to pay: more

Iterative diagonalization algorithm




2- ADAPT THE CODE TO THE HARDWARE TOPOLOGY

One eigenvalue determination

BEFORE

AFTER

• One application of the Hamiltonian= several tasks

DOT FFT GEMM

- Clean the routine to ensure thread safety
- Identify « sharable » data
 - Adopt a *coarse grain* model
 - One or several openMP task per Hamiltonian application Instead of low-level openMP sections
 - Use multithreaded-FFT in « batch » mode
 Use multithreaded-GEMM

4- EXTERNALIZE ELEMENTARY OPERATIONS

Use *MKL* Intel library as much as possible

- Linear Algebra (GEMM...)
- FFT, in *batch* mode
 Apply FFT simultaneously on several vectors
- Today ~65% of the computing time in the MKL. Target: 80 %?
- Use specialized libraries for the diagonalization of small matrixes (1000x1000)
 Example: ELPA library - MIC version currently in dev.
 EigensoLvers for Petascale Applications

Automatic vectorization: helping the compiler

```
VectorizableNotDO II=2,NMAXDOA(II) = B(II)+C(II)DD(II) = E(II)-A(II-1)AEND DOEND
```

```
Not vectorizable
DO II=2,NMAX
   D(II) = E(II)-A(II-1)
   A(II) = B(II)+C(II)
END DO
```

Need A before it has been computed

 Code stability issue:
 Vectorization applies operations in a non deterministic order

5- IMPROVE THE VECTORIZATION

Code stability issue

See Y. Chatelain presentation

- Due to the indeterminate order of operations, MPI processes may obtain slightly different results
- The iterative diagonalization algorithm is very sensitive to small desynchronizations between MPI processes
- Example: m_pawrad/csimp_gen + LOBPCG
 (a simple integral...)
- Known problem ; to be solved now!
 Identify code sections very sensitive to vectorization
 Data alignment?, round errors minimization?

6- ADD AN ABSTRACTION LAYER

- Separate low-level elementary operations and high-level code sections (physics)
- Enable the physicist to work without worrying about the low-level specific code
- Have the freedom to choose the low-level language
- Do not manage the specific memory access at high level

See J. Bieder presentation	
$\begin{array}{c} (\hline \text{Counter utilization}) \\ \text{Abinit} \\ y_{h} = \nabla - c_{\mu} a^{\mu} (h+6) \tau \end{array}$	

$\frac{(1)}{\psi_k} = \sum_g c_g e^{g(k+G)r}$
$\begin{array}{c} \hline \\ \hline \\ \text{CounterPressure} \end{array} \\ \hline \\ \text{DFT: Solve } \hat{H} \psi\rangle = \varepsilon \psi\rangle \\ \text{DFPT: Solve } (\hat{H}^{(\alpha)} - \varepsilon_n) \psi_n^{(\lambda_1)}\rangle = -\hat{H}^{(\lambda_1)} \psi_n^{(\alpha)}\rangle \\ \text{DMFT: Project to local basis with } P_{nn}^R(\mathbf{k}) = \langle \chi_{km}^R \psi_{kn} \rangle \\ \text{Others} \end{array}$
terface asoc la cosche if aflastractor)
Memory:xgBlock_Init,xgBlock_free,xgBlock_map,xgBlock_reverseMap, BLAS interface:xgBlock_gemm,xgBlock_axpy, LAPACK interface:xgBlock_potrf,xgBlock_trsm,xgBlock_heev,
Crocked attornation Choix de la cible • emptiliserer • empt

- Choice of an abstraction layer specifically designed for ABINIT and the Wavefunction object.
- Objective: produce several versions of the low-level methods (HSW, MIC, GPU, ...)

CONCLUSION ABINIT ON MANYCORE ARCHITECTURES

- A 6-step porting job
- ABINIT cannot benefit from MIC without deep changes
 ~4 times slower without modifications
- Use of *multithreading* is not an option
- May 2017: work partially done
 Performances already improved
 See J. Bieder's talk

Assistance to user

- Choice of most adapted algorithm
- Automation of tasks distribution

Load balancing between nodes

- Pre-estimation of the number of iterations?
- Locking?

Fault tolerance

. . .

