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Electric field perturbation: difficulties

The perturbation -E-r is nonperiodic and unbound from below

* Nonperiodic
Methods based on Bloch's theorem and eigenstates ¢ do not apply
* Unbound from below

Energy can always be lowered by transferring charge from valence
states 1n one region to conduction states in a distant region

Electric field “bends” the energy bands
— Dielectric breakdown by interband (Zener) tunneling

— An infinite crystal in the presence of an electric field
does not have a ground-state




1* Method: Structural response to macroscopic electric fields

Electric field derivatives of arbitrary order can be computed from DFPT
R. W. Nunes and X. Gonze, PRB 63, 155107 (2001)

* Low-order Taylor expansion of the energy with respect to the electric field

* Dependence of the energy on the structural degrees of freedom 1s
preserved to all orders

* Two step approach:

1) Map out the energy as a function of the polarization

2) Use this energy surface & field-coupling term to compute the ground
state structure in the presence of the electric field
* More informations

Na Sai, K. M. Rabe and D. Vanderbilt, PRB 66, 104108 (2002)
H. Fu and R. E. Cohen, Nature 403, 281 (2000)



Constrained polarization approach: formalism

Structural response at constant electric field E

F (E ): min F (R E ) < R"‘I (E) Strain n and atomic positions R
sl at fixed electric field E
R.n n,(E)

—1 0F
Q 0E,

Polarization: thermodynamic conjugate of E: P_=

Legendre transformation (A=QE):

_ A polarization:
F(P)=minF (R ,n,P)

f(R,n,P)zmin[F(R,n,A)+A - P | } Strain and atomic positions at fixed
R,n Req(P)&neq(P)

Inverse Legendre transformation

F(E)=min[F(P)—QE - P]

P



Constrained polarization approach: formalism

e Taylor expansion of F(R,n,E) around E =0

OF (R ,n,E)
0FE

F(R,n,E)
OFE E,

1 0’
E=0+EZ E.E,

F(R,n,E)=F(R,n,0)+) E,
x o, B

E=0

* Truncation of the Taylor expansion at the lowest order
F,(R.,n,E)\=F(R,n,0)-QE -P(R,n,0)

Approximation 1s supposed to be valid in systems where the ionic
contribution to the polarization dominates (f. ex. ferroelectrics)

e Resulting expression

F(P)=min [F(R,n,0)+A-(P—-P(R,n,0))]

A,R,n



Constrained polarization approach: formalism

e System of equations to be solved
OF(R,n,0) dP(R.n,0)

A=0
O R O R
6F(R,n,())_6P(R,n,())A_O
on on
P(R,n,0)=P

* In practice: Taylor expansion of F(R,n,0) and P(R,n,0)

1 0
F(R,n,O)=F(R0’n0’0)—f5R+[206n+EK6R2+7C6n2+y6R6n

P(R,n,O)=P(R0’nO7O)+éZ*6R+e§n

R, n, : trial guess of the initial coordinates and strains (R =R -R & én=n-n,)

, O :  Hellmann-Feynmann forces and stresses
interatomic force constants

rigid atom elastic constants

coupling parameters between R and n
Born effective charges

clamped 1on piezoelectric tensor

®N®R OX



Constrained polarization approach: formalism

* Linear systems of equations

K y -UQZ"\[6R f
y QC —e on |=|—-Qo
—-1/QZ° —e 0 A AP

AP = difference between initial and target values of P

e [terative solution

Choose R, & n,

Compute
* f, o (Hellmann-Feynmann theorem)
e P (Berry phase)
e K,C,y, e&Z (linear response)

l

Solve linear system of equations to
obtain new atomic positions and strains
« R - R +6R

e n,—n,+on

repeat until
converged



Berry phase calculation of P and the ddk

o P

Definition of the Born effective charges zZ*=0 —

Computation of P: string averaged Berry phase kb k  k+b

—2e
(21T

P= fdk Sin (][] det S(k, k+b))

Computation of Z° (linear response, non-stationarry expression)

occ

. 216[2
f Z<6R 6k

PROBLEM: If the ddk is computed from linear response, the relation
between Z" and P is only satisfied in a the limit of a dense k-point mesh

Finite k-point grid: finite difference formula of the ddk

aunk _ 1 unk+b unk—b

ak _Zb <unk|unk+b> <unk|unk_b>

Comments:

— No violoation of the charge neutrality
— Same arguments in case of the piezoelectric tensor



Implementation
 ABINIT: new Berry phase routine (berryphase_new.f)

— Easier to use
— Polarization in cartesian coordinates
— MPI parallelization over k-points

e ANADDB:
Structure of the DDB New routine relaxpol.f
Header * Called from anaddb.f
* Compute P in cartesian coordinates

Total energy * Solve linear system of equations

1*-order energy e Compute A, residual forces and
derivatives stresses

2 order energy * Update atomic positions and lattice
derivatives constants




In practice (v.4.3.x)

1* step: Ground state calculation of the forces and the stress tensor

2" step: Berryphase calculation of P and the ddk

— kptopt =3

— berryopt = -3: use berryphase_new.f routine

— rfdir =11 1: compute projection of P & ddk along x, y and z
— nband = number of occupied bands

3™ step: Linear response calculation

4™ step: Use ANADDB to compute new atomic positions and lattice
constants

— polflag =1
— targetpol = target value of the polarization (cartesian coordinates & C/m?)
— relaxat, relaxstr

— natfix, 1atfix, istrfix

} specify which degrees of freedom are allowed to relax

Repeat steps 1, 2, 3 & 4 until convergence is reached



Const. polarization
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Application: ¢/a of PbTiO, as a function of P

Motivation: PbTiO, thin films grown on a SrTiO, substrate

PbTiO,
SrTiO3

Experiment:

c/a decreases with decreasing film thickness

Theory (effective hamiltonian):
depolarizing electric field
= reduction of the polarization
- reduction of c/a
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Result

a has been fixed at the theoretical lattice
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Application: non-linear dielectric response of
tetragonal PbTiO,

P as a function of an electric field along z

Zzzi R Ionic dielectric constant:

0.003 e=17.82
é o (linear response € = 17.37)
S 0
g 000 Tunability:

oo LI
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2" method: First-principles approach to insulators in
finite electric fields

For a supercell of size L =N a (a = unit cell size, N = number of k-

points), use only fields smaller than g -~ E,
© N,a
e For E <E_, we can minimize the energy functional

F[{unk}]=FKS_a3E - P
- F, = Kohn-Sham energy at zero ¢lectric field

— P = macroscopic polarization that is computed as a Berry phase of
“field polarized” Bloch functions u_

— Long-lived metastable state

e For E >E_, F has no minimum

e More informations

1. Souza, J. [ﬁiguez and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002)



Minimization of the energy functional F

Strategy: use the preconditione cg minimization implemented in ABINIT
to minimiez F_
6 F

6<unk|

Gradient of the energy functional F |G, )=

|G )=H (k)| u, )+ W)

usual zero-field electric field
term term

. k-b k k+b
Electric field term ® o« o >0 @

|Wnk>=C(E>Z[Sr_n:t(k’k-l_b”umk+b>_S;1:z(k’k_b>|umk—b>]

m

Transform |G ) into a preconditioned cg search direction |D_)



Minimization of the energy functional F

e Update of a state |u_)
|u, )" =cos(0)|u, )" +sin(0)|D )
e Minimize F(0)

- E =0: analytic formula for 6 _
M. C. Payne et al., Rev. Mod. Phys. 64, 1045 (1992)

— E # 0: no analytic formula for 0__. , line minimization must be

performed numerically



Computation of forces and stresses

* Field polarized Bloch functions are stationary points of F, the Hellmann-
Feynmann theorem yields for the force on atom |

dF  OF

“ar,~ ar,

fi=

(no implicit dependence on r; via the wavefunctions)

F[{unk}]:FKS_a3E .(Pel+P

t

no explicit dependence on I

ion )

0F
or.

J

—_— ff:_

-I—eZJ.E

e Similar arguments show that the expression used to compute the stress
under zero electric field remains valid



Implementation in ABINIT (4.3.x)

gstate.f
Initialization of Berry phase calculation:
—~initberry.f * Polarization, ddk & electric field
* store informations in the efield_type structured datatype

—»scfev.f

—+»berryphase new.f Initialize polarization pel_cg(l:3) & Initialize overlap matrices

Start SCF optimization of wavefunctions

—»vtorho.f

Lvtowfk.f

L Non-SCF line minimizations. For each iteration
cgwi.f * update overlap matrices

* add the electric field contribution to the gradient

e perform line minimization numerically (linemin.f)

—»>Update polarization: add change in Berry phase to pel_cg(1:3)

End SCF optimization of wavefunctions

—»berryphase new.f Recompute polarization, check that it is consistent
with the value obtained from the update of the wavefuntions




In practice (4.3.x)

e 1% step: Perform a calculation under zero electric field

e 2" step: Electric fiel calculation (use wavefunctions computed during the

first step to initialize the calculation)
— berryopt =4

— efield(]:3) = cartesian coordinates of the electric field in atomic units
- nsym=1
— kptopt =3

— nband = number of valence bands

e COMMENTS:

— 1insulators only

— MPI parallelization not yet implemented
— no spin polarization (spin polarization probably available in ABINITv4.4.x)

— You should increase the amplitude of the electric field in small steps

- Suggestion: use multiple datasets. For each dataset, use a slightly larger value of the
electric field and take wavefunctions of the previous dataset to initialize the SCF
cycle.



Force on Al along the x direction

Applications: AlAs, electric field along x

f, (a.u.)

0.002

0.0015

0.001

0.0005

0

-0.0005

-0.001

-0.0015

-0.002 L

-6 -4 -2 0 2 4 6 8

Electric field (107 a.u.)

Born effective charges:

6P 0of

7 =0 —
ot OF

Finit electric field calculation:
7" =2.1057

Linear response calculation:
Z =2.1019






Applications: AlAs, electric field along (1,1,1)

Polarziation as a function of E = E*(1,1,1)

Non-linear optical susceptibilities
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Black = Theory
Blue = Experiment
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Conclusions

First-principles calculations of insulators in finite electric fields

e 1 method: structural response to macroscopic electric fields

— Derivatives of the energy with respect to the electric field can be accurately computed
from DFPT

— Low order Taylor expansion of the energy with respect to the electric field
— Map out the energy as a function of the polarization
— Iterative optimization of the structure under the constrained of a fixed polarization

e 2" method: first-principles approach to insulators in finite electric fields

— Practical scheme for computing the electronic structure of insulators under a finite
bias

— For E < E : minimization of a modified energy functional

— Accurate computation of the total energy, the polarization, the forces and stresses

— Finite difference calculation of electric field derivatives



