
 1

New implementation of Chebyshev filtering
inside

ABINIT

 B.Sataric1, J.Bieder2, M. Torrent3 and W.Jalby1

 1 University of Versailles UVSQ, France 2 University of Liege, Belgium 3 CEA, DAM, DIF, Arpajon, France

 2

Chebyshev filtering algorithm

● Eigenvalues of Eigenproblem Hψ = λSψ ψ = λSψ Sψ ψ can be represented
by Λ, and eigenvectors can be represented by P

● In that case eigenproblem notation becomes Hψ = λSψ P = Sψ PΛ or Sψ -1Hψ = λSψ
= PΛP-1

● Spectral filter Tn can be used to filter eigencomponents as
given in formula: Tn (Sψ -1 Hψ = λSψ)ψ = PTn (Λ)P-1ψ

● Rayleigh-Ritz procedure is used to separate the individual
eigenvectors and eigenvalues, and iterate until convergence

 3

Chebyshev filtering algorithm

● Input: a set of Npw × N bands wavefunctions Ψ

● Output: the updated wave-functions Ψ

 Locate eigenvalue spectrum

 Compute Rayleigh quotients for every band, and set λSψ - equal to the largest one

 Set λSψ + to be an upper bound of the spectrum

 Compute the filter center and radius c = (λλSψ + + λSψ -)/2, r = (λλSψ + - λSψ -)/2

 Compute Chebyshev polynomial for each eigenvector

 for each band ψ do
 Sψ et ψ0 = ψ, and ψ1 = 1/r * (λSψ -1 Hψ = λSψ ψ0 − cψ0)
 for i = 2, . . . , ninner do

 ψi = 2/r * (λSψ -1 Hψ = λSψ ψi−1 − cψi−1) − ψi−2

 end for
 end for

 Apply Rayleigh-Ritz procedure

 Compute the subspace matrices Hψ = λSψ ψ = ΨTHψ = λSψ Ψ, and Sψ Ψ = ΨTSψ Ψ

 Solve the dense generalized eigenproblem Hψ = λSψ ΨX = Sψ ΨXΛ, where Λ is a diagonal matrix

of eigenvalues, and X is the Sψ ψ - orthonormal set of eigenvectors

 Do the subspace rotation Ψ Ψ← Ψ X

 4

Abinit abstract layer (xg datatypes –
developed by Jordan Bieder2)

● Highly efficient multi-threaded wrapper module for BLAS/LAPACK
(level-1 and level 2) routine calls

● Module is used to help developer use 2D arrays and their subblocks with
ease (by xgBlock pointer objects)

● It contains sub-module used for MPI matrix transpositions (all-to-all and
all-gether)

● New functions added during Chebfi2 development:
– xgBlock_colwiseDivision
– xgBlock_saxpy

● XG provided smooth translation of CB1 code into CB2 without worrying
about particular details of BLAS or LAPACK function parameters,
Fortran pointers or OpenMP pragmas and variables

 5

Xg usage example (Chebfi 2
nextOrderPolynom)

if (chebfi%paw) then
 !apply matrix inverse function
 call getBm1X(chebfi%xAXColsRows, chebfi%X_next)
else
 !copy xAXColsRows into X_next array
 call xgBlock_copy(chebfi%xAXColsRows,chebfi%X_next, 1, 1)
end if
!scale xXColsRows by center
call xgBlock_scale(chebfi%xXColsRows, center, 1)
!X_next = X_next - xXColsRows
call xgBlock_saxpy(chebfi%X_next, dble(-1.0), chebfi%xXColsRows)
!scale xXColsRows by 1/center
call xgBlock_scale(chebfi%xXColsRows, 1/center, 1)

if (iline == 0) then
 !scale X_next by 1/radius
 call xgBlock_scale(chebfi%X_next, one_over_r, 1)
else
 !scale X_next by 2/radius
 call xgBlock_scale(chebfi%X_next, two_over_r, 1)
 !X_next = X_next - X_prev
 call xgBlock_saxpy(chebfi%X_next, dble(-1.0), chebfi%X_prev)
end if

 6

Different solver scaling on Intel Xeon
Cascadelake

 7

TODO list and expectations

● TODO:
 Finalization of MPI transposition
 Optimization of coding (Hamiltonian application and inverse matrix

calculation)
 Addition of nspinors=2 capability
 Automation of task distribution

● Expectations:
 Better MPI scaling of Chebfi2 than LOBPCG2 because Rayleigh-Ritz

procedure is done only once (instead of once per iteration) – thus
reducing communication

 Chebfi2 will be available for use as a standalone library

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

