A NEW TEST SYSTEM FOR ABINIT
BOTTOM-UP APPROACH ON STRUCTURED DATA

T. CAVIGNAC

ECOLE POLYTECHNIQUE DE LOUVAIN, UNIVERSITE CATHOLIQUE DE
LOUVAIN-LA-NEUVE

EcOLE CENTRALE DE LYON

ABINIT DEVELOPER WORKSHOP, MAI 2019

B UCLouvain

WHY DO WE TEST ?

We have to test to
m Find bugs
m Grant quality of the physical results
m Prevent breaking old features working on new ones

TABLE OF CONTENTS

The need of a new comparison method
The solution proposed

What is coming next

THE NEED OF A NEW COMPARISON
METHOD

CARACTERISTICS OF THE CURRENT COMPARISON

METHOD

m Linear comparison of lines
m Extracting of every floating point and individual comparison

m One tolerance, used as absolute and relative, for the whole
test

m Auxiliaries tolerances used if the main one is not respected

Strength :

m Systematic/comprehensive
top-down approach
m Strict by design

m Does not require specific
format of the output,
except for the first
character of the line

m Just work ™

Flaws :

m Linear analysis fail if the
number of significant line
differ

m Unaware of physics

m Hardly any extension
possibilities

m Very rigid configuration
leads to weakening the

whole test when a few lines

are hard to get right

SOME QUANTITATIVE INSIGHT

default
(le-

ridiculous
(0.01)

) easy
mediu (1e-05)
(1e-08)

Figure: Repartition of the main fldiff tolerances in the pool of tests

200

200

100 1001
o 0-

-20 0 =20 -10 0

Repartition of the auxiliary tolerances in the pool of tests:
(left) log,, of absolute tolerance, peak between -5 and -2
(right) log,, of relative tolerance, peak between -1.5 and o

Figure: "Quality" of tests according to their tolerances (left: all, top
right: v3 only, bottom right: v8 only)

THE SOLUTION PROPOSED

CARACTERISTICS OF THE NEW COMPARISON METHOD

m Based on structured data in the form of YAML documents
embeded in the main output file

YAML documents produced by Fortran

Bottom-up approach

Configured with a separate file also written in YAML
Aware of the "iteration state"

Testing side written in Python and integrated with the
existing testsuite

m Integration of Numpy and Pandas

Strength:
m Great flexibility

m Open lots of new
possibilities

m Backward compatible: YAML
documents can be ignored
and the test bot will behave
as it did before

m Allow physics aware
analysis

m Matching of tester and
reference documents is
done through label and
iteration state

Flaws:

m Ask for more configuration
when enabled

m Have to be configured for
each test and each physical
quantity

m Brand new, need real world
testing

The two methods are complementary and will be used together.

label : results gs

comment : Summary of ground states results.
natom :
nsppol : 1
cut : {"ecut": 8.00000000000000000E+00, "pawecutdg": -1.0¢
convergence: {
"deltae": -9.53903622757934500E-13, "res2": 2.1313514519660¢
"residm": 8.96759867517499773E-11, "diffor": undef,
s
etotal : -8.87168809125275004E+00
entropy : 0.0000000000000COOOE+OO
fermie : 2.17655487277611859E-01
stress tensor: !Tensor
- [2.76864061740706878E-05, 0.00000000000000000E+00, 0.00000¢
- [0.00000000000000000E+00, 2.76864061740706878E-05, 0.00000¢
- [0.00000000000000000E+00, 0.00000000000000000E+00, 2.76864(
cartesian forces: !CartForces
- [-0.00000000000000000E+00, -0.00000000000000000E+00, -0.00000C
-0.00000¢

- [-0.00000000000000000E+00, -0.00000000000000000E+00,

Figure: Example of a YAML document in ABINIT output

PRODUCING A YAML DOCUMENT ON THE FORTRAN SIDE

Two level of API:

m m_neat: high-level API, should be called in computations
routines

m m_yaml_out:low-level API, actually produce YAML
documents, supposed to be called only from m_neat.

Additional toolboxes:

m m_stream_string: variable-size string type, can be used
as a buffer to build a YAML document

m m_pair_Llist: structure to store key-value pairs, keys are
strings and values integers, real numbers or strings.

1. Usem_pair_list to store values as the computation go on:
call pl%set("Etot", r=etot_val)

2. Pass data to a m_neat routine you wrote before

3. Itwill call m_yaml_out routines to build a document and
use stream_wrtout to output it
call yaml_single_dict("Etot", ", pl, 30, 100, stream=mydoc)
call stream_wrtout(mydoc, iout)

PYTHON-SIDE ENTRY POINTS

m Input file TEST_INFO section and YAML test configuration
m structures.py

m conf_parser.py

YAML FILE

tol abs: 1.0e-10
tol rel: 1.0e-10
tol vec: 1.0e-5

Etot:
Actual test tol abs: 1.0e-7
configuration .
resu ts_gs:
belongs here. tol rel: 1.0e-12
Define the.rules convergence:
for each piece ceil: 1.0e-6
of data and the Etot steps:
logic of the test. ° d;t:?s'
callback:
method: last iter
tol iter: 3

Figure: An example of YAML configuration file

TAGS AND STRUCTURES

@yaml_auto map
class Etot(object):
__yaml_tag = 'ETOT'

def init (self, label='nothing',
comment='no comment'):
self.label = label
self.comment = comment

YAML provides

@classmethod

facilities to def from map(cls, map):
new = super(Etot, cls).from map(map)

have new. components = {

09 name: value

for name, value in new. dict .items()
specialized
l. . if name not in [
ogic for some "Etotal’,
'label’

data structures. Lol

'Band energy',
'Total energy(eV)'

1
}
return new

Figure: Example of a structure definition

CONSTRAINTS AND PARAMETERS

Here are defined the rules used in YAML configuration file.
The actual comparison functions (constraints) belong here as
well as their parameters declarations.

@conf parser.constraint(exclude={'tol', 'ceil', ‘'ignore'})
def tol abs(tol, ref, tested):

Valid if the absolute difference between the values is below the
given tolerance.

return abs(ref - tested) < tol

Figure: Example of constraint definition

WHAT IS COMING NEXT

WE NEED YOU !

How you can help:

m Read the documentation (located at
~abinit/doc/developers/new_testsuite.md), give
us feedback on it

m Add YAML testing to your old tests
m Use YAML testing in your new tests

NEW OPPORTUNITIES

m Parameterized tests
m Test starting from precomputed binaries
m Strongly noisy tests giving stable processed quantities

m New processing in test (linear regression, statistics, simpler
consistency tests...)

| want to express my gratitude to Jean-Michel Beuken for his
help with the test farm and the building process of ABINIT. | also
want to thank Matteo Giantomassi and Xavier Gonze for giving
me the possibility of doing this work and for their supervision.

THANK YOU FOR YOUR ATTENTION !

QUESTIONS ?

	The need of a new comparison method
	The solution proposed
	What is coming next

