

X. Gonze M. Giantomassi

Thanks to the > 50 ABINIT contributors, and especially to GM Rignanese for contributions to the slides

ABINIT software project

Ideas (1997) :

- 1) Software for first-principles simulations are more and more complex : needs a worldwide collaboration, of specialized, complementary, groups
- 2) Linux software development : 'free software' model

Now (2019) :

2000 registered people on the forum
800 kLines of Fortran90 + many python scripts (abipy) about 50 contributors to ABINITv8

Last release v8.10.3, used in this hands-on http://www.abinit.org

UCLouvain

Skoltech

Available freely (GPL, like Linux).

The "Free" software concept

Free for freedom (also price ...)

- o freedom 1 : unlimited use for any purpose
- freedom 2 : study and modify for your needs (need source access !)
- o freedom 3 : copy
- o freedom 4 : distribute modifications
- From copyright to freedom ("copyleft")
 - o copyright allows licensing
 - o licenses grants freedom

Terminology : Free software=Open source=Libre software

ABINIT pioneered the use of the GPL « Free software license » in the computational condensed matter community (2000)

http://www.abinit.org : download, documentation ...

Goals of materials research

- -Lifetime
- -Synthesis
- -Cost
- -Ecologic/toxicologic caracteristics

Empirical approach ? (trial/error) Semi-empirical approach ? (guided trials)

Skoltech

Electronic many-body problem

After the Born-Oppenheimer approximation :

- decoupling of the nuclei and electron dynamics
- nuclei positions can be considered as fixed
- effective Born-Oppenheimer potential energy hypersurface

Born-Oppenheimer energy

$$E_n^{BO}\left(\left\{\mathbf{R}_I\right\}\right) = E_{II}\left(\left\{\mathbf{R}_I\right\}\right) + E_n^{el}\left(\left\{\mathbf{R}_I\right\}\right)$$

Potential created by nuclei, felt by the N electrons

$$V_{\text{ext}}(\mathbf{r}) = -\sum_{I} \frac{Z_{I}}{\left|\mathbf{r} - \mathbf{R}_{I}\right|}$$

$$\left[\sum_{i}\left(-\frac{1}{2}\nabla_{i}^{2}+V_{ext}\left(\mathbf{r}_{i}\right)\right)+\sum_{i< j}\frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}\right]\Psi_{n}\left(\mathbf{r}_{1},\mathbf{r}_{2},\ldots,\mathbf{r}_{N}\right)=E_{n}^{el}\Psi_{n}\left(\mathbf{r}_{1},\mathbf{r}_{2},\ldots,\mathbf{r}_{N}\right)$$

Many-body Schrödinger equation,

very difficult to address for more than 2 electrons

Basic difference between classical and quantum many-body systems

Classical objects : fields $p(\mathbf{r},t), V(\mathbf{r},t), T(\mathbf{r},t), \mathbf{E}(\mathbf{r},t), \dots$ or trajectories $\mathbf{R}_1(t), \mathbf{R}_2(t), \mathbf{R}_3(t), \dots \mathbf{R}_N(t)$

Quantum objects : wavefunctions for interacting particles

Classical positions and velocities of 8 planets : 2x3x8=48 real numbers.

Suppose an oxygen atom : 8 electrons. Quantum description at a particular time, on a discretized 10x10x10 real space mesh contained in a cube... 24-dimensional object 10²⁴ real numbers

Density-functional theory (DFT)

Quantum objects : wavefunctionsfor interacting particles $\Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, ..., \mathbf{r}_N, t)$

Hohenberg & Kohn (1964), Kohn & Sham (1965) : Legendre transform between the density and potential gives an <u>effective</u> potential for <u>non-interacting</u> particles

DFT : set of wavefunctions for non-interacting particles $\psi_1(\mathbf{r},t)$

 $\boldsymbol{\psi}_1(\mathbf{r},t), \boldsymbol{\psi}_2(\mathbf{r},t), ..., \boldsymbol{\psi}_N(\mathbf{r},t)$

CLouvain

Skoltech

For the oxygen atom, back to 8x10x10x10 real numbers, but with an approximate treatment ...

W. Kohn, chemistry Nobel prize 1998

The Kohn-Sham orbitals and eigenvalues

Non-interacting electrons in the Kohn-Sham potential :

$$\begin{pmatrix} -\frac{1}{2}\nabla^{2} + V_{KS}(\mathbf{r}) \end{pmatrix} \psi_{i}(\mathbf{r}) = \varepsilon_{i} \psi_{i}(\mathbf{r})$$
Density $n(\mathbf{r}) = \sum_{i} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})$

$$V_{KS}(\mathbf{r}) = V_{ext}(\mathbf{r}) + \int \frac{n(\mathbf{r}')}{|\mathbf{r}' - \mathbf{r}|} d\mathbf{r}' + \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}$$
Hartree potential Exchange-correlation potential

To be solved self-consistently !

<u>Note.</u> At self-consistency, supposing XC functional to be exact :

- the KS density = the exact density,
- the KS electronic energy = the exact electronic energy
- but KS wavefunctions and eigenenergies correspond to a fictitious set of independent electrons, so they do not correspond to any exact quantity.

Properties from DFT+MBPT+ ...

Computation of ...

interatomic distances, angles, total energies electronic charge densities, electronic energies

A basis for the computation of ... chemical reactions electronic transport vibrational properties thermal capacity dielectric behaviour optical response superconductivity surface properties spectroscopic responses

Properties from DFT+MBPT+ ...

Computation of ...

interatomic distances, angles, total energies electronic charge densities, electronic energies

A basis for the computation of ... chemical reactions electronic transport vibrational properties thermal capacity dielectric behaviour optical response superconductivity surface properties

spectroscopic responses

An example : Zircon / Hafnon

- body-centered tetragonal $(I4_1/amd)$
- primitive cell with 2 formula units of MSiO₄
- M atoms (0,3/4,1/8) Si atoms (0,1/4,3/8) O atoms (0, u, v)

- $(SiO_4)^{4-}$ anions and M⁴⁺ cations
- alternating SiO₄ tetrahedra and MO₈ units, sharing edges to form chains parallel to [0 0 1]
- MO_8 units : 4 O atoms are closer to the Zr atoms than the 4 other ones
- O atoms are 3-fold coordinated

UCLouvain

Structural parameters

	HfS	biO ₄	ZrSi	$rSiO_4$		
	$\mathrm{Th.}$	Expt.	Th.	Expt.		
a	6.61	6.57	6.54	6.61		
с	5.97	5.96	5.92	6.00		
u	0.0672	0.0655	0.0645	0.0646		
v	0.1964	0.1948	0.1945	0.1967		
Volume	130.42	128.63	126.60	131.08		
d(Si-O)	1.62	1.61	1.61	1.62		
d(M-O)	2.14	2.10	2.10	2.13		
	2.27	2.24	2.24	2.27		
∠(O-Si-O)	97°	97°	97°	97°		
. ,	116°	117°	116°	116°		

Interatomic distances and angles are within 1 or 2% of experimental values.

Phonon frequencies at the zone center

Properties from DFT+MBPT+ ...

Computation of ...

interatomic distances, angles, total energies electronic charge densities, electronic energies

A basis for the computation of ... chemical reactions electronic transport vibrational properties thermal capacity dielectric behaviour optical response superconductivity surface properties spectroscopic responses

What can we do today ?

What can we do today ?

Don't give me a fish ...

... teach me how to fish ...

Basic Documentation

Web site http://docs.abinit.org

- User's guides
- Installations notes
- List of input variables + description
- List of topics = a hub to input variables, files, tutorial, bibrefs
- > over 800 example input files
- >30 tutorial lessons (each 1-2 hours) https://docs.abinit.org/tutorial
- + Forum Web site http://forum.abinit.org
- + Past ABINIT events (schools/workshops) https://www.abinit.org/events

highly recommended:

https://school2019.abinit.org/

ABINIT tutorial : layout + dependencies

Skoltech, September 7, 2019

binit

Skoltech

ABINIT + python : Abipy, Abitutorials ...

ABINIT organization on GitHUB <u>https://github.com/abinit</u>

Abipy : python library for launching ABINIT jobs, and analysing/plotting the results <u>http://github.com/abinit/abipy</u> => e.g. connecting ABINIT with tools for high-throughput calculations developed in the Materials Project context (e.g. Pymatgen, Fireworks) <u>https://materialsproject.org/</u> Abitutorials : tutorial based on Jupyter notebooks ABINIT+python

Skoltech

ABINIT + python : Abipy, Abitutorials ...

Abipy

Gallery of plotting scripts <u>https://abinit.github.io/abipy/gallery/index.html</u> AbiPy workflows <u>https://abinit.github.io/abipy/flow_gallery/index.html</u> Jupyter notebooks with interactive tutorials and examples results <u>https://nbviewer.jupyter.org/github/abinit/abitutorials/blob/master/abitutorials/index.ipynb</u>

Introduction to AbiPy for newcomers <u>https://github.com/gmatteo/abipy_slides_aps_boston_2019</u>

How to use the AbiPy command line interface https://gmatteo.github.io/abipy_intro_aps_boston_abidev2019

Running ABINIT : basics

Density Functional Theory calculations

Representation of mathematical entities:

- wavefunctions
- density, potential ... ?
- => choice of a basis set ; entities are linear combination of the basis set functions
- Treatment of periodic solid, molecules, surfaces, nanostructures, interfaces ... ?
- => treatment using adequate boundary conditions Many different implementations ...

Here a few words about :

PseudoPotentials (or Projector Augmented Waves – PAW) Periodic boundary conditions

Plane Wave basis set vs all-electron calculations with

localized orbitals

Iterative algorithms

Core and valence electrons (I)

Core electrons occupy orbitals that are « the same » in the atomic environment or in the bonding environment

It depends on the accuracy of the calculation !

Separation between core and valence orbitals : the density... $n(\mathbf{r}) = \sum_{i}^{N} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})$ $= \sum_{i \in core}^{N_{core}} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r}) + \sum_{i \in val}^{N_{val}} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r}) = n_{core}(\mathbf{r}) + n_{val}(\mathbf{r})$

« Frozen core » for $i \in core : \psi_i = \psi_i^{atom}$

Small core / Large core

It depends on the target accuracy of the calculation ! (remark also valid for pseudopotentials, with similar cores) For some elements, the core/valence partitioning is obvious, for some others, it is not.

F atom :
$$(1s)^{2} + (2s)^{2}(2p)^{5}$$

IP 1keV 10-100 eV
Ti atom : $(1s)^{2}(2s)^{2}(2p)^{6}(3s)^{2}(3p)^{6}(4s)^{2}(3d)^{2}$ small core
 $(1s)^{2}(2s)^{2}(2p)^{6}(3s)^{2}(3p)^{6}(4s)^{2}(3d)^{2}$ large core
IP 99.2 eV 43.3eV

Gd atom : small core with n=1,2,3 shells , might include 4s, 4p, and 4d in the core. 4f partially filled

Removing core electrons (I)

From the previous construction : valence orbitals must still be orthogonal to core orbitals (=> oscillations, slope at the nucleus ...)

Pseudopotentials try to remove completely the core orbitals from the simulation

Problem with the number of nodes This is a strong modification of the system ...

Pseudopotentials confine the strong changes within a « cut-off radius »

Example of pseudopotential

Pseudopotentials/PAW data in ABINIT

• Preferred PAW atomic dataset table : JTH

Jollet, Torrent, Holzwarth, Computer Physics Comm. 185, 1246 (2014)

https://www.abinit.org/psp-tables

H																	He
Li	Be	1										в	С	Ν	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
К	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	\mathbf{Br}	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ba	П	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	п	Pb	Bi	Po	At	Rn
Fr	Ra		Rf	Ha	Sg	Ns	Hs	Mt	-								-
		11						-									
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Ть	Dy	Ho	Er	Tm	Yb	Lu
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	\mathbf{Lr}

Atomic data available Atomic data non available

Also, possibility to use : GPAW table, GBRV v1.0 table, or norm-conserving

pseudopotentials (e.g. ONCVPSP pseudo generator), or many others

Pseudopotentials/PAW data in ABINIT

 Norm-conserving pseudos : pseudo-dojo approach Van Setten et al , Computer Physics Comm. 226, 39 (2018) https://www.pseudo-dojo.org

Hel	p me	1			D	SI	FI		D		Hom	e F.A.G). Conti	ribute	At	pout
1 1 32 H 0.1 36 2.5 42 -0.00 Hydrogen				7		5			3.13 Alean	3	Select the to get the specific electron	flavor and complete t ement. "H	l format, th able of pse TML" gives	en click "D eudos or cl s full test re	ownload" 100se a esults.	2 1 39 He 45 4.2 49 na Helium
3 2 33 Li 0.2 37 1.9 41 -0.10 Lithium	4 2 38 Be 1.4 44 4.4 50 0.20 Beryllium				D	ownload		hints 32.7 37.2 43.3	tests 4 0.95 5 2.20 6 -0.09		5 2 34 38 44 Boron	6 2 37 C 0.1 41 0.1 45 0.10 Carbon	7 2 36 N 42 0.4 48 -0.10 Nitrogen	8 2 36 42 6.5 48 -0.20 Oxygen	9 2 36 F 42 0.6 48 -0.60 Fluorine	10 2 Ne 0.0 34 1.7 40 Neon
11 3 Na 0.4 44 4.6 48 -0.00 Sodium	12 3 Mg _{0.4} 42 1.5 48 0.00 Magnesium	NC (ONCVPS	Гуре Р v0.4)	\$	PBE	XC \$	Acc stand	u racy lard \$	For ✓ psp8 upf	mat	13 2 Al 0.5 20 1.3 26 -0.10 Aluminium	14 2 Si 0.1 0.2 24 -0.10 Silicon	15 2 P 18 0.1 22 0.3 28 -0.50 Phosphorus	16 2 20 0.0 26 0.1 32 -0.00 Sulphur	17 2 25 0.8 29 3.1 33 -0.30 Chlorine	18 2 29 Ar 0.0 33 1.2 37 na Argon
19 3 33 K 0.2 37 2.0 43 -0.30 Potassium	20 3 Ca _{0.1} 34 0.3 38 -0.20 Calcium	21 4 5 SC 1.3 39 22 4 38 TI 0.9 42 1.3 44 - 0.00 Scandium	$\begin{smallmatrix} 23 & 4 \\ & V \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	24 4 43 47 55 -0.00 Chromium	25 4 Mn 42 16.9 54 -0.10 Manganese	$\begin{bmatrix} 26 & 4 \\ & Fe \\ & 5.6 \\ & 9.2 \\ & -0.10 \\ & Iron \end{bmatrix}$	27 4 42 CO 48 1.4 54 -0.00 Cobalt	28 4 Ni 45 1.1 55 -0.10 Nickel	html djrepo 40 -0.9 52 -0.10 Copper	4 42 48 48 20.10 Zinc	$\begin{matrix} 31 & 3 \\ Ga _{0.5} \\ 40 & 1.5 \\ 46 & -0.00 \\ Gallium \end{matrix}$	32 3 Ge 0.5 39 1.0 45 -0.00 Germanium	33 3 AS 38 42 42 0.7 48 -0.00 Arsenic	34 3 39 Se 0.2 43 0.5 49 -0.10 Selenium	35 2 Br 23 0.0 29 -0.20 Bromine	36 2 22 Kr 26 2.3 34 na Krypton
37 3 Rb _{0.2} 23 -0.40 Rubidium	38 3 Sr 1.3 34 6.1 40 -0.20 Strontium	39 4 30 1.0 36 2.3 42 -0.10 Yttrium Zirconium	41 4 Nb 37 1.3 41 1.3 49 -0.00 Niobium	42 4 MO _{1.4} 40 1.0 46 -0.10 Molybdenum	43 4 38 TC 1.6 42 1.1 48 -0.00 Technetium	44 4 BRU 2.1 42 1.5 50 -0.00 Ruthenium	45 4 Rh _{2.6} 44 2.1 50 -0.00 Rhodium	46 3 Pd 1.1 41 1.3 49 -0.10 Palladium	$\begin{matrix} 47 & 4 \\ & Ag \\ & 0.3 \\ & 0.6 \\ & 47 & -0.10 \\ & \text{Silver} \end{matrix}$	48 4 47 Cd 1.1 51 3.5 57 -0.00 Cadmium	49 3 10 31 35 41 -0.10 10 10 10 10 10 10 10 10 10	50 3 Sn _{0.8} 36 1.8 42 0.00 Tin	51 3 36 40 1.0 44 0.00 Antimony	52 3 34 40 1.6 46 0.10 Tellurium	53 2 31 0.4 35 1.1 41 0.00 Iodine	54 2 28 Xe 0.0 34 2.5 42 na Xenon
55 3 CS 0.1 1.5	56 3 Ba ₁₈ 22 4.9	$\begin{bmatrix} 72 & 4 \\ 25 & \text{Hf} \\ 0.6 \\ 0.8 \end{bmatrix}$	73 4 25 Ta 0.7 0.6	74 4 ₃₁ W 0.2 0.1	75 4 30 Re 0.7 36 0.4	76 4 33 OS 1.7 0.9	77 4 30 Ir 1.5 34 0.9	78 4 38 Pt 0.6 42 0.5	79 4 32 Au 1.3 38 1.6	80 4 29 Hg 0.7 7.2	81 3 27 31 0.1 0.2	82 3 Pb _{0.1} 28	83 3 29 Bi 0.2 0.4	84 3 28 PO 0.3 32 0.5	85 na na At na	86 3 32 Rn 0.0 36 24

External files in a ABINIT run

Results :

log, main output, energy derivatives (_DDB), ... – text files density (_DEN), potential (_POT), wavefunctions (_WFK), ... – binary F90 files or similar files in netCDF (_DEN.nc, _POT.nc, _WFK.nc)

Advantage of netCDF : portable, addressed by content, extensible, Python-friendly

ABINIT : the pipeline and the driver

Basic 'files' file : delivers filenames

h2.in	Name of input file
h2.out	Name of main output file
h2i	'Root' name for possibly other input files
h2o	'Root' name for possibly other output files
h2	'Root' name for temporary files
hydrogen.hgh	Name for the pseudopotential file for atoms of type 1
oxygen.pspnc	Name for the pseudopotential file for atoms of type 2
92u.psp	Name for the pseudopotential file for atoms of type 3

Made of at least 6 lines (more if > 1 type of atoms) with one name/address specified on each of these lines.

A basic 'input' file : dihydrogen (I)

H2 molecule in big cubic box

 \mathcal{A}

SF Skoltech	Skoltech, September 7, 2019
0.7 0.0 0.0	# Triplet giving cartesian coordinates of atom 2, in Bohr
-0.7 0.0 0.0	# Triplet giving cartesian coordinates of atom 1, in Bohr
	# will follow, one triplet of number for each atom
xcart	# This keyword indicate that location of the atoms
typat 1 1	# Roth are of type 1 that is Hydrogen
natom 2	# Two atoms
# Definition of the a	# to type(s) of atom. Here, the only type is Hydrogen.
	# mentioned in "filenames" file must correspond
	<pre># possible type(s) of atom. Pseudopotential(s) # recentioned in "file recent of the recent of t</pre>
znucl 1	# Keyword "znucl" refers to atomic number of
ntypat 1	# Only one type of atom
# Definition of the a	itom types
	# lengths of primitive vectors (default in Bohr)
acell 10 10 10	# Keyword "acell" refers to
# Definition of the u	init cell
# Reywords followe	to by values. Order of keywords in me is not important.
# Characters after	'#' or after '!' are comments, will be ignored.

A basic input file : dihydrogen (II)

#	Definition	of	planewave	basis set
---	------------	----	-----------	-----------

ecut 10.0 # Maximal plane-wave kinetic energy cut-off, in Hartree

Definition of k-point grid

kptopt 0# Enter k points manuallynkpt 1# Only one k point is needed for isolated system,# taken by default to be 0.0 0.0 0.0

#Definition of SCF (self-consistent field) procedure

nstep 10 # Maximal number of SCF cycles
toldfe 1.0d-6 # Will stop when, twice in a row, the difference
between two consecutive evaluations of total energy
differs by less than toldfe (default in Hartree)
Although this is not mandatory, it is worth to precondition the
SCF cycle. A model dielectric function, used as standard
preconditioner, is described in "dielng" input variable section.
Here, we follow prescriptions for molecules in a big box

After modifying the following section, one might need to ... #%%<BEGIN TEST_INFO> Metadata ... to be ignored in the tutorial !

ABINIT : periodic codes + PWs

Plane waves e^{iKr} : particularly simple and efficient (when used with pseudopotentials), but infinite spatial extent.

Cannot use a finite set of planewaves for finite systems ! Need periodic boundary conditions.

Primitive vectors \mathbf{R}_{i} , primitive cell volume Ω_{0}

Solution : the supercell technique

Molecule, cluster

Surface : treatment of a slab Interface

UCLouvain

Point defect in a bulk solid

The supercell must be sufficiently big : convergence study

Skoltech

Main input file : input variable flexibility

- cell primitive vectors \rightarrow rprim
 - ... or angle (degrees) between primitive vectors \rightarrow angdeg
 - + scale cell vector lengths \rightarrow acell
 - + scale cartesian coordinates \rightarrow scalecart
- number of atoms \rightarrow natom
- reduced coordinates \rightarrow xred (initial guess ...)
 - ... or cartesian coordinates \rightarrow xcart (in Bohr) / xangst (in Å)
- types of atoms \rightarrow ntypat , typat
- space group \rightarrow spgroup + natrd
 - ... or number of symmetries \rightarrow nsym
 - + symmetry operations \rightarrow symmetry thons

Example : cubic zirconium dioxide

Face-centered cubic, with three atoms per primitive cell

natom 3 acell 3*5.01 Angst NOTE "*" is a repeater rprim 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 typat 1 2 2 xred 3*0.0 3*0.25 3*0.75 => symmetries are found automatically

OR	natom 3
•••	acell 3*5.01 Angst
	rprim 0.0 0.5 0.5
	0.5 0.0 0.5
	0.5 0.5 0.0
	typat 1 2 2
	spgroup 225 natrd 2
	xred 3*0.0 3*0.25 => the set of atoms is completed automatically
tinit -	· · · · · · · · · · · · · · · · · · ·

Periodic system : wavevectors

For a periodic Hamiltonian : wavefunctions characterized by a wavevector $\,k$ (crystal momentum) in Brillouin Zone

Bloch theorem
$$\Psi_{m,k}$$
 $(\mathbf{r}+\mathbf{R}_j) = e^{i\mathbf{k}\cdot\mathbf{R}_j}\Psi_{m,k}$ (\mathbf{r})

$$\boldsymbol{\psi}_{m,\mathbf{k}} (\mathbf{r}) = \left(N \Omega_0 \right)^{-1/2} e^{i\mathbf{k}\cdot\mathbf{r}} u_{m,\mathbf{k}} (\mathbf{r}) \qquad u_{m,\mathbf{k}} (\mathbf{r} + \mathbf{R}_j) = u_{m,\mathbf{k}} (\mathbf{r})$$

Normalization ?

Born-von Karman supercell supercell vectors $N_j \mathbf{R}_j$ with $N=N_1N_2N_3$ $\psi_{m,\mathbf{k}}$ $(\mathbf{r}+N_j \mathbf{R}_j) = \psi_{m,\mathbf{k}}$ (\mathbf{r})

Planewave basis set

Reciprocal lattice : set of **G** vectors such that $e^{i\mathbf{GR}_j} = 1$ $e^{i\mathbf{Gr}}$ has the periodicity of the real lattice

Convergence wrt to kinetic energy cutoff

From discrete states to Brillouin zone

Discrete summations over states :

Louvain

Skoltech

Total kinetic energy
$$\sum_{n} \langle \psi_{n} | -\frac{1}{2} \nabla^{2} | \psi_{n} \rangle$$

Density
$$n(\mathbf{r}) = \sum_{n} \psi_{n}^{*}(\mathbf{r}) \psi_{n}(\mathbf{r})$$

In the periodic case : summation over energy bands + integration over the Brillouin zone

Total kinetic energy
$$\sum_{n} \frac{1}{\Omega_{0k}} \int_{\Omega_{0k}} f(\varepsilon_{F} - \varepsilon_{nk}) \langle \psi_{nk} | -\frac{1}{2} \nabla^{2} | \psi_{nk} \rangle dk$$

Density
$$n(\mathbf{r}) = \sum_{n} \frac{1}{\Omega_{0k}} \int_{\Omega_{0k}} f(\varepsilon_{F} - \varepsilon_{nk}) \psi_{nk}^{*}(\mathbf{r}) \psi_{nk}(\mathbf{r}) dk$$

How to treat
$$\frac{1}{\Omega_{ok}} \int_{\Omega_{ok}} X_{k} dk ?$$

Brillouin zone integration

 $\frac{1}{\Omega_{ok}} \int_{\Omega_{ok}} X_{k} dk \implies \sum_{\{k\}} w_{k} X_{k} \qquad [\text{ with } \sum_{\{k\}} w_{k} = 1]$

How to chose {k } and {w_k } ? Special points Weights

Simple answer : Homogeneous grid (1D - 2D - 3D) and equal weights

ETSF Skoltech

BZ integration : Monkhorst-Pack grid

• Uniformly spaced grid of $n_{k1} \times n_{k2} \times n_{k3}$ points in the first Brillouin Zone [Monkhorst & Pack, Phys. Rev. B 13, 5188 (1976)]

ngkpt nk1 nk2 nk3

Unshifted and shifted grids

- k-points grid can be chosen to be shifted : not centered at Γ.
- Advantage : comparable accuracy can be obtained with fewer kpoints in IBZ (especially for highly symmetric cases)

Skoltech

Algorithmics : problems to be solved

(1)	Kohr	- ו	Sham	equation

 $\underline{\underline{A}} \underline{\underline{x}}_i = \lambda_i \underline{\underline{x}}_i$

$$\begin{bmatrix} -\frac{1}{2}\nabla^2 + V_{KS}(\mathbf{r}) \end{bmatrix} \boldsymbol{\psi}_i(\mathbf{r}) = \boldsymbol{\varepsilon}_i \boldsymbol{\psi}_i(\mathbf{r})$$
$$\begin{cases} \mathbf{G}_j \end{bmatrix} \qquad \left\{ \mathbf{r}_j \right\}$$

Size of the system[2 atoms...]600 atoms...] + vacuum ?Dimension of the vectors \underline{x}_i 300...100 000...(if planewaves)# of (occupied) eigenvectors4...1200...

(2) Self-consistency

UCLouvain

Skoltech

(3) Geometry optimization

Find the positions $\{\mathbf{R}_{\kappa}\}$ of ions such that the forces $\{\mathbf{F}_{\kappa}\}$ vanish [= Minimization of energy]

Current practice : iterative approaches

Stages in the main processing unit

Skoltech

A basic 'input' file : dihydrogen (I)

H2 molecule in big cubic box

 \mathcal{A}

SF Skoltech	Skoltech, September 7, 2019
0.7 0.0 0.0	# Triplet giving cartesian coordinates of atom 2, in Bohr
-0.7 0.0 0.0	# Triplet giving cartesian coordinates of atom 1, in Bohr
	# will follow, one triplet of number for each atom
xcart	# This keyword indicate that location of the atoms
typat 1 1	# Roth are of type 1 that is Hydrogen
natom 2	# Two atoms
# Definition of the a	# to type(s) of atom. Here, the only type is Hydrogen.
	# mentioned in "filenames" file must correspond
	<pre># possible type(s) of atom. Pseudopotential(s) # recentioned in "file recent of the recent of t</pre>
znucl 1	# Keyword "znucl" refers to atomic number of
ntypat 1	# Only one type of atom
# Definition of the a	itom types
	# lengths of primitive vectors (default in Bohr)
acell 10 10 10	# Keyword "acell" refers to
# Definition of the u	init cell
# Reywords followe	to by values. Order of keywords in me is not important.
# Characters after	'#' or after '!' are comments, will be ignored.

A basic input file : dihydrogen (II)

ecut 10.0 # Maximal plane-wave kinetic energy cut-off, in Hartree

Definition of k-point grid

kptopt 0# Enter k points manuallynkpt 1# Only one k point is needed for isolated system,# taken by default to be 0.0 0.0 0.0

#Definition of SCF (self-consistent field) procedure

nstep 10 # Maximal number of SCF cycles
toldfe 1.0d-6 # Will stop when, twice in a row, the difference
between two consecutive evaluations of total energy
differs by less than toldfe (default in Hartree)
Although this is not mandatory, it is worth to precondition the
SCF cycle. A model dielectric function, used as standard
preconditioner, is described in "dielng" input variable section.
Here, we follow prescriptions for molecules in a big box

After modifying the following section, one might need to ... #%%<BEGIN TEST_INFO> Metadata ... to be ignored in the tutorial !

ABINIT tutorial : layout + dependencies

Density Functional Perturbation Theory

Many physical properties = derivatives of total energy (or suitable thermodynamic potential) with respect to perturbations. Consider :

- atomic displacements (phonons)
- dilatation/contraction of primitive cell
- homogeneous external field (electric field, magnetic field ...)

Derivatives of total energy (electronic part + nuclei-nuclei interaction) :

1st order derivatives : forces, stresses, dipole moment ...

- 2nd order derivatives : dynamical matrix, elastic constants, dielectric susceptibility atomic polar tensors or Born effective charge tensors piezoelectricity, internal strains ...
- 3rd order derivatives : non-linear dielectric susceptibility, Raman susceptibilities electro-optic effect, phonon phonon interaction, Grüneisen parameters, ...
 Further properties obtained by integration over phononic degrees of freedom :

entropy, thermal expansion, phonon-limited thermal conductivity ...

Phonon band structure

Analysis of instabilities

MgSiO₃

CUBIC

(5at/cell)

ORTHORHOMBIC

(20at/cell)

Phonon dispersion relations.

(a) Ideal cubic phase : unstable.

(b) Condensations of the unstable phonon modes generate a (meta) stable orthorhombic phase

Helmoltz free energy and specific heat

$$F = U - TS$$

$$C_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} = T\left(\frac{\partial S}{\partial T}\right)_{V} = -T\left(\frac{\partial^{2}F}{\partial T^{2}}\right)_{V}$$
Vibrational contribution to F :
$$\Delta F = 3n_{at}N \ k_{B}T \int_{0}^{\omega_{max}} \ln\left\{2\sinh\left(\frac{\omega}{2k_{B}T}\right)\right\}g(\omega)d\omega$$

$$I_{montonic}(K)$$
Vibrational contribution to Cv :
$$C_{V} = 3n_{at}N \ k_{B} \int_{0}^{\omega_{max}} \left(\frac{\omega}{2k_{B}T}\right)^{2} \operatorname{csch}^{2}\left(\frac{\omega}{2k_{B}T}\right)g(\omega)d\omega$$

$$I_{montonic}(K)$$

Ab initio thermal expansion

Skoltech, September 7, 2019

Skoltech

Ab initio thermal expansion

G.-M. Rignanese, J.-P. Michenaud and XG *Phys. Rev. B* <u>53</u>, 4488 (1996)

Wrap-up

Free software (open source)

Excellent documentation

Implementation of density-functional theory (DFT), many bodyperturbation theory (MBPT - GW or BSE), density-functional perturbation theory (DFPT), dynamical mean-field theory (DMFT), ...

Versatile (many properties of materials) Especially good at vibrational, dielectric, thermodynamic, spectroscopic, optical properties

Interested to contribute ?

There is a postdoc position open at Skoltech ! Contact X.Gonze@skoltech.ru https://join.skoltech.ru/postdoc-positions/ <u>Postdoctoral research position in Computational Materials Science</u> (still open ...)

Developer's corner on ABINIT Wiki https://wiki.abinit.org

Developer's corner on ABINIT Web site https://docs.abinit.org/developers

