

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2011-2.3.5 �– Second Implementation Phase of the European High

Performance Computing (HPC) service PRACE

PRACE-2IP

PRACE Second Implementation Project

Grant Agreement Number: RI-283493

D8.1.2

Performance Model of Community Codes
Final

Version: 1.0
Author(s): Claudio Gheller, Will Sawyer, Thomas Schulthess, CSCS; Fabio Affinito,
CINECA; Ivan Girotto, Alastair McKinstry, Filippo Spiga, ICHEC; Laurent Crouzet, CEA;
Andy Sunderland, STFC; Giannis Koutsou, Abdou Abdel-Rehim, CASTORC; Fernando
Nogueira, Miguel Avillez , UC-LCA; Georg Huhs, José María Cela, and Mohammad Jowkar,
BSC.
Date: 24.11.2011

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 43

5. Performance Analysis of Community Codes: Material Science
The codes discussed in the present chapter are representative set of the most used ab initio
electronic structure codes in Europe that are freely distributed under open source licenses. The
particular selection is based only on community input. Initial input was gathered during the
community selection phase prior to the submission of the first deliverable of this work
package. During a subsequent face-to-face meeting as well as several conference calls,
representatives from the European Theoretical Spectroscopy Facility (ETSF) and the
Quantum ESPRESSO community decided to select the following set of codes that are to be
further investigated: (1) a suite of codes from the ETSF; (2) Quantum ESPRESSO [67]
including PWscf [66]; and (3) Siesta [68]. Siesta was included as a representative of localized
numerical basis set codes that are used mostly in chemistry and complement the plane wave
pseudopotential codes developed by the ETSF and Quantum ESPRESSO communities. The
ETSF suite of codes includes ABINIT [69], EXCITING [70], ELK [71], OCTOPUS [72], and
YAMBO [73].

The code descriptions and performance data presented bellow were provided by the
communities that maintain the codes. It has to be emphasized that the benchmarks used for
the performance analysis represent typical workloads for which the codes have been
developed (in contrast to codes and problems selected by centres to emphasis scalability of a
code or performance of a supercomputer). Hence the benchmarks are not uniform. No attempt
has been made to polish the results. In some cases, such as ABINITI, teams have in the past
invested into scalability of parts of the code base. In other cases, such as EXCITIN/ELK, the
code has not been running on much more than large workstations and small clusters. The
purpose of subsequent work in the present work package will be to improve the performance
of these codes and to map them onto future supercomputing platforms, such as hybrid multi-
core systems. The intent is to eventually make these codes fit for PRACE Tier 1 and possibly
even Tier 0 systems.

5.1 ABINIT
5.1.1 Global description of ABINIT
ABINIT is a package whose main program allows one to find from first principles the total
energy, charge density, electronic structure and miscellaneous properties of systems made of
electrons and nuclei (molecules and periodic solids) using pseudo-potentials and a plane-wave
or wavelet basis. The basic theories implemented in ABINIT are Density Functional Theory
(DFT), density-functional perturbation theory (DFPT), Many-Body Perturbation Theory (the
GW approximation and Bethe-Salpeter equation), and Time-Dependent Density Functional
Theory. The main ABINIT program includes options to optimise the geometry according to
the DFT forces and stresses, to perform molecular dynamics simulations using these forces, to
determine transition states (string method), to perform path-integral molecular dynamics. It
can also directly generate dynamical matrices, Born effective charges, dielectric tensors, and
other linear and non-linear coupling quantities, based on Density-Functional Perturbation
Theory. Excited states computations from Many-Body Perturbation Theory (the GW
approximation) delivers band gaps generally in excellent agreement with experiment, unlike
with DFT. Accurate Optical properties are obtained with excitonic effects within the Bethe-
Salpether equation.

ABINIT is delivered under the GNU General Public Licence (GPL [74]), and freely
distributed on the Web. The documentation is extensive, also provided on the Web. More than
800 automatic tests are integrated in the package, allowing to verify the development by
different groups worldwide.

The functional structure of ABINIT, at the highest level, is represented by Figure 40.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 44

Depending on the input parameters, ABINIT will call one (or several) processing unit(s) in
turn. These processing units are rather independent, implement different algorithms, and their
parallelisation is to be addressed separately.

Figure 40: Functional structure of ABINIT.

Section 5.1.2 will address performance issues for the basic DFT calculations using plane-
waves and wavelets. In section 5.1.3, the two major steps, based on plane-waves, for the
calculation of the electronic structure using MBPT will be detailed: the screening calculation
and the self-energy calculation.

In the different sections, several physical or numerical parameters are to be considered in
order to understand the computational load and memory scaling, and also the possibilities to
distribute it on different processors.

The size of the physical cell (in real space) will usually scale directly with Natom, the number
of atoms to be represented, although much larger cells will be needed to host systems placed
in vacuum (like molecules, or nanotubes, or slabs) when treated with plane-waves.

The basis set size will directly depend on this size of the cell. It will also depend on the spatial
resolution, measured by the kinetic energy cut-off Ecut (plane-waves) or the grid spacing
(wavelets).

The number of points in real space, usually connected to a Fast Fourier treatment (plane-wave
case), will be represented by Nfft. The number of plane-waves Npw to be used is usually a fixed
fraction of Nfft. The number of wavelets will be represented by Nwvl.

In case of plane-waves, the resolution (small wavelength details) is governed by the kinetic
energy cut-off Ecut. Roughly, Nfft or Npw are proportional to Natom times Ecut

3/2. In Ground-state
DFT as well as MBPT, different resolution grids might coexists (e.g. for the representation of
the screening matrix in GW)

The sampling of electronic velocities (or wave-vectors) is described by the number of "k-
points" in the Brillouin zone, Nkpt. Usually it scales inversely proportional to the size of the
system, although one cannot go below one k point. The number of electronic states, or energy
bands Nband, is also usually proportional to the number of atoms Natom. In DFT or DFPT, one
often treats explicitly only the occupied electronic states or also the low-lying unoccupied
states. For MBPT calculation (screening or self-energy), the number of unoccupied states to
be treated to converge the results can be much larger than the number of occupied states (a
factor 100 is not unusual).

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 45

Finally, there are two additional physical quantities that can lead to a distribution of the
computational load and memory:

(1) for spin-polarised systems, the two spins can be treated separately, to a large extend.
Nsppol=2 in this case.

(2) for spinorial wave-functions, the two spinor components can be treated also
separately. Nspinor=2 in this case.

5.1.2 Ground-State calculations: performances
Historically, ABINIT uses plane-waves to describe the electronic wave functions; it makes an
intensive use of Fourier transforms, in particular when applying the local part of the
Hamiltonian.

ABINIT parallelisation is exclusively performed using the MPI library for the current stable
version and for ground-state calculations. In a beta version, several time consuming code
sections of the ground-state part have been ported to GPU. Even if it is already useable, this
level of parallelisation is in progress�…

In recent years, a development of wave functions on a wavelet basis has been introduced (for
the ground state calculations), using wavelet transforms and a specific Poisson operator in real
space. The implementation of wavelets has been achieved in the project named "BigDFT�”
[78]. During this project, a library of functions devoted to wavelets has been produced. It is
used by ABINIT and can also be called from a standalone executable. The library and the
standalone code are inseparable parts of the ABINIT project.

This section devoted to ground-state calculations with ABINIT is divided in three
subsections: 1-plane-waves using MPI, 2-plane-waves using CUDA, 3-wavelets.

5.1.2.1 Electronic ground state calculations using planes-waves; performances using
MPI

Parallelisation levels
Several levels of parallelisation have been introduced in ABINIT; they can be used separately
or simultaneously:

 Parallelisation over k points: this is a classical level of parallelisation in DFT codes.
Several terms of the total energy are obtained by integration over the wave-vector
space (k points). Each contribution to the integral can be computed separately. A final
reduction (global communication) is done to get the total energy. As the scaling of this
parallelism level is almost linear, it is not checked here.

 Parallelisation over independent spins: in the case of spin-polarised systems, each spin
component of the density can be computed independently. As the scaling of this
parallelism level is almost linear, it is not checked here.

 Parallelisation over bands: parallelisation over plane-waves: These two levels of
parallelisation are linked. To solve the Kohn-Sham DFT equations, an eigenvalue
problem has to be solved (only the lowest eigenvalues are computed); Nband
eigenvalues have to be identified, expressing the Hamiltonian matrix on a plane-wave
basis (Npw basis elements). In ABINIT, an iterative �“by block�” algorithm is used
(LOBPCG= �“Locally Optimal Block Preconditioned Conjugate Gradient�”). It can be
parallelised over Nband and Npw. Results concerning this level of parallelisation are
presented here.

 Parallelisation over spinorial components: in some specific cases (non-collinear
magnetism, spin-orbit coupling) each electronic wave function has to be expressed as

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 46

a �“spinor�” (two vectors). This level of parallelisation is implemented in ABINIT but
not detailed here.

 Parallelisation over replicas of the unit cell: this is a high-level parallelism level. For
some specific applications, the simulation cell has to be replicated several times:
�“Minimal Energy Path�” research or inclusion of the quantum effect of atomic nuclei
(PIMD=�“Path-Integral Molecular Dynamics�”). Although it is needed (especially for
PIMD), this distribution of workload can be considered as �“embarrassingly parallel�”.
We just verifired that the scaling is linear.

Definition of main time consuming parts:

 Hamiltonian application: this routine applies Hamiltonian H (and overlap matrix S) to
the wave-functions. It is divided in three parts:

- Application of local operator (Fast Fourier Transform)
- Application of non-local operator
- MPI communications (�“alltoall�”)

 LOBPCG algorithm: this routine solves the eigenvalue problem by minimisation using
LOBPCG algorithm; it mainly uses linear algebra.

 Diagonalisation/orthogonalisation of wave functions: this routine solves the eigen-
problem in wave-functions subspace; it mainly uses linear algebra.

 Local Potential: this routine computes the evolving parts of the local potential
(Hartree + exchange-correlation).

 Forces: this routine computes forces on atoms.

Band-FFT strong scaling
In the following, we test how the increasing of cores at fixed load (i.e., in a strong scaling
regime) affects the performance of each of the functions. We verify that the code scales
linealry with the number of cores and try to find at what number of cores a « plateau » is
reached. Such tests help to check if the core work is well balanced.

Test case: one vacancy in a 108 Gold atoms unit cell (i.e., 107 atoms). Gamma k-point
calculation. The (unrelaxed) vacancy breaks symmetries and induces large forces.
�“Projector Augmented-Wave�” (PAW) method is used.

Libraries used: MPI and ScaLAPACK

Keeping fixed the number of atoms and increasing the number of CPU cores.
We check here that, mixing band and FFT level, the performance model is not simple. For a
given total number of CPU cores, performances directly depend on their distribution on bands
and plane-waves.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 47

Varying only plane-wave CPU cores

CPU total clock time (s) 65 (band) x 2 (npw) 65 (band) x 4 (npw) 65 (band) x 6 (npw)

65 (band) x 8
(npw)

ABINIT part 130 cores 260 cores 390 cores 520 cores

Hamiltonian application:
local operator (FFT)

2538,0 4547,9 8342,9 8720,9

Hamiltonian application:
non local operator

20568,9 19451,4 18698,3 21086,7

Hamiltonian application:
alltoall communications

3167,0 6613,9 12453,1 14518,3

LOBPCG algorithm
(without Hamiltonian application)

29385,1 74593,0 108648,9 157520,6

Diagonalisation/orthogonalisation
of wave functions

1308,0 3570,6 9277,6 15312,9

Local potential computation
(Hartree + XC)

8601,4 12986,4 13081,0 15773,6

Forces computation
3272,8 4861,3 4918,0 5596,9

Others 6972,4 10932,3 11858,8 21830,1

Total 75813,6 137556,8 187278,6 260360,0

Table 8: CPU total clock time of ABINIT varying the number of plane-wave CPU cores.

Figure 41: Repartition of time in ABINIT routines varying the number of plane-wave CPU cores.
While some parts of the code scale linearly (ex: non-local operator), others become predominant. A
plateau is observed at 390 cores.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 48

Varying only band cores

CPU total clock time (s) 9 (band) x 6 (npw) 18 (band) x 6 (npw) 36 (band) x 6 (npw) 72 (band) x 6 (npw)

ABINIT part 72 cores 144 cores 216 cores 432 cores

Hamiltonian application:
local operator (FFT)

4601,9 5085,0 5196,1 6461,3

Hamiltonian application:
non local operator

20891,1 20957,1 20982,7 23122,3

Hamiltonian application:
alltoall communications

3248,7 4196,8 4708,0 10966,4

LOBPCG algorithm
(without Hamiltonian application)

4581,1 27232,0 50083,6 361190,1

Diagonalisation/orthogonalisation
of wave functions

767,4 1731,3 2736,7 9520,1

Local potential computation
(Hartree + XC)

1890,1 4063,6 6405,4 14779,9

Forces computation 3272,8 4861,3 4918,0 5596,9

Others -683,7 714,2 3912,3 20955,2

Total 38569,4 68841,3 98942,8 452592,2

Table 9: CPU total clock time of ABINIT varying the number of band CPU cores.

Figure 42 Repartition of time in ABINIT routines varying the number of band CPU cores.
While some parts of the code scale linearly (ex: non-local operator, forces), others become predominant.
On 432 cores, the codes clearly has no more a linear behavior.

Band-FFT weak scaling
Differently from the previous two cases presented (strong scaling), we keep here the number
of cores fixed observing the performance when the number of atoms changes. In this case the
problem size (workload) assigned to each processing element stays constant and additional
elements are used to solve a larger total problem.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 49

Test case: a 108 (or 54) Gold atoms unit cell; atomic positions obtained from a
Molecular Dynamics simulation at 500K. Gamma k-point calculation. The �“Projector
�“Projector Augmented-Wave�” (PAW) method is used.

Libraries used: MPI and ScaLAPACK

Varying the number of atoms keeping the number of CPU cores constant

CPU total clock time (s) 55 (band) x 8 (npw) 55 (band) x 8 (npw)

108 atoms 54 atoms

ABINIT part 440 cores 440 cores

Hamiltonian application: local operator (FFT) 6571,1 1852,1

Hamiltonian application: non local operator 23775,7 1831,9

Hamiltonian application: alltoall communications 8037,5 3691,3

LOBPCG algorithm (without Hamiltonian application) 378221,4 32112,2

Diagonalisation/orthogonalisation of wave functions 9912,5 5485,0

Local potential computation (Hartree + XC) 15262,4 3569,5

Forces computation 5379,0 854,5

Others 21087,2 11831,3

Total 468246,8 61227,8

Table 10: CPU total clock time of ABINIT varying the number of atoms.

Figure 43: Repartition of time in ABINIT routines varying the number of atoms. This test case is not a full
« weak scaling » performance test as the number of cores is kept fixed. When only the size of the system is
increased, the resolution of the eigenvalue problem becomes the predominant part.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 50

Varying the number of atoms and the number of CPU cores

CPU total clock time (s) 55 (band) x 8 (npw) 55 (band) x 4 (npw)

108 atoms 54 atoms

ABINIT part 440 cores 220 cores

Hamiltonian application: local operator (FFT) 6571,1 874,5

Hamiltonian application: non local operator 23775,7 1759,2

Hamiltonian application: alltoall communications 8037,5 1145,8

LOBPCG algorithm (without Hamiltonian application) 378221,4 14544,8

Diagonalisation/orthogonalisation of wave functions 9912,5 1234,5

Local potential computation (Hartree + XC) 15262,4 2901,4

Forces computation 5379,0 744,0

Others 21087,2 3370,2

Total 468246,8 26574,4

Table 11: CPU total clock time of ABINIT varying the number of atoms and number of cores.

Figure 44: Repartition of time in ABINIT routines varying the number of atoms and the number of cores.
This weak scaling performance test clearly shows that the code does not scale linearly which is an
expected behavior for a DFT code. As the size of the simulation cell increases, the number of plane waves
increase as the cube of the cell size.

Influence of the CPU cores distribution in the parallelisation levels
Test case: PuO2 surface: 60 atoms (correlations, magnetism, f electrons, vacuum�…).
400 bands; gamma k-point calculation
�“Projector Augmented-Wave�” (PAW) method is used.

We check here how the distribution of CPU cores in the (Nband x Npw x Nkpt) levels of
parallelisation influences the performance.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 51

Figure 45: Scaling of ABINIT wrt the distribution of (Nband x Npw x Nkpt) CPU cores

Parallelisation over replicas of the simulation cell
Test case: calculation of the energy barrier between two positions of a silicon interstitial
atom; 65 silicon atoms; 4 k-points; 130 bands; PAW method.

We check here that this level of parallelisation scales almost linearly.

Figure 46 Scaling of ABINIT wrt the CPU cores distributed on the replicas of the cell.

5.1.2.2 Electronic ground state calculations using planes-waves; performances using
CUDA

Use of Graphic Processing Units (GPU) will be available in the 6.12 version ABINIT; this
implementation is in beta stage. It uses NVIDIA CUDA library and is still evolving. The
following performance profiling has to be considered as a step toward the full
implementation.

Three parts of the code have been parallelised:
 Application of the local Hamiltonian (Fast Fourier Transform); it has been chosen

to use the cuFFT library (included in CUDA package).
 Application of the non-local Hamiltonian; specific CUDA kernels have been

written for the non-local operator and its derivatives (forces, stresses�…).

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 52

 Linear algebra used in the LOBPCG algorithm and diagonalisation-
othogonalisation in the wave-functions subspace; for that purpose we use cuBLAS
library delivered in CUDA package and GNU-GPL MAGMA library (LAPACK on
GPU [75]).

The GPU implementation is fully compatible with all MPI levels of parallelisation except the
FFT level. Only results obtained with one CPU cores are shown here in order to isolate the
GPU performances only.

Test cases (all done using PAW):
 Test Au: 107 gold atoms (vacancy in gold crystal)
 Test BaTiO3: 39 atoms (one vacancy in 8 BaTiO3 units)
 Test Cu: 20 copper atoms

Application of local Hamiltonian
Use of cuFFT library for the Fast Fourier Transform of wave functions.
Test case FFT CPU time (sec) FFT GPU time (sec)

Test Au 246,1 156,2

Test BaTiO3 164,2 120,3

Test Cu 19,6 25,4

Table 12: Comparison of elapsed time for the wave function FFT.

As shown in Table 12, executing FFT on GPU is only profitable when the size of wave
functions is large enough. However, according to the simulated system, it is possible to send
several wave functions together to the graphic card, increasing the FFT efficiency.
Table 13 shows the results obtained for the smallest test case (Test Cu), varying the number of
wave functions sent to the GPU:

of wave-functions sent
to the GPU

FFT GPU time (sec)

1 25,4

2 20,8

4 14,1

84 9,6

Table 13: Elapsed time for the wave function FFT w.r.t. the number of WF sent.

Figure 47: Profiling of elapsed time for the application of FFT to one wave function, in the �“Test Cu�” test
case; �“GPU time�” corresponds to the bare GPU time needed by the graphic card to execute the FFT task;
�“CPU time�” corresponds to the total elapsed time, including kernel latencies and synchronisations.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 53

Application of non-local Hamiltonian
Specific CUDA kernels have been implemented to compute application of non-local operator
and its contribution to energy, forces and stress tensor.
Test case NL op. CPU time (sec) NL op. GPU time (sec)

Test Au 3142,0 1172,9

Test BaTiO3 185,1 160,2

Test Cu 85,1 42,4

Table 14: Comparison of elapsed time for the application of non-local operator.

As shown in Table 14, the efficiency of the adopition of the non-local Hamiltonian based
approach on the GPU strongly depends on the number and type of treated electrons (s, p, d or
f).
Application of linear and matrix algebra

All vector/matrix multiplication in LOBPCG algorithm are done using the cuBlas library.
Orthogonalisation and diagonalisation of the Hamiltonian in the wave-function subspace uses
MAGMA package. It can be shown that this use of MAGMA is only profitable when the size
of matrixes is large enough. A threshold value has been introduced to call MAGMA routines
only when they are efficient. It can be shown that this use of MAGMA is only profitable
when the size of matrixes is large enough. A threshold value has been introduced to call
MAGMA routines only when they are efficient. This value has been empirically estimated to
100 (size of matrix) and can also be determined « on the fly » by launching a small lapack
routine at the start of the code.
Test case LOBPCG CPU time (sec) LOBPCG GPU time (sec)

Test Au 761,9 593,1

Test BaTiO3 709,0 342,1

Test Cu 21,3 12,3

Table 15: Comparison of elapsed time for the LOBPCG algorithm.

Global profiling on GPU
Performances are subject to change as the development of the GPU code is a work in
progress. In the following table we show performances of the ABINIT running on GPU in the
present state of the code (v6.12 to be released in december 2011). Improvements of the GPU
implementation are ongoing and have not been included.
Test case Curie

GPU Fermi
Time (sec)

Curie
CPU

Time (sec)

Titane
GPU Tesla
Time (sec)

Titane
CPU

Time (sec)

Test Au 609,8 1528,0 1856,8 4230,7

Test BaTiO3 681,1 865,1 810,11 849,0

Test Cu 67,5 235,6 102,2 153,0

Table 16: Comparison of total elapsed times using (or not) GPU on two different architectures; Curie:
CPU=Intel Westmere, GPU=NVidia Fermi M2090; Titane: CPU=Intel Nehalem, GPU=NVidia Tesla
S1070

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 54

5.1.2.3 Electronic ground state calculations using wavelets: BigDFT profiling
BigDFT is a project that should be considered inseparable from ABINIT. It consists of two
(connected) parts: a library, which is used by ABINIT, and a standalone code. We present
here some performance of the standalone code.

Two data distribution schemes are used in the parallel version of the program. In the orbital
distribution scheme, each processor works on one or a few orbitals for which it holds all its
scaling function and wavelet coefficients. In the coefficient distribution scheme each
processor holds a certain subset of the coefficients of all the orbitals. Most of the operations
�— such as applying the Hamiltonian on the orbitals and the preconditioning �— are done in the
orbital distribution scheme. This has the advantage that we do not have to parallelise these
routines with MPI. The calculation of the Lagrange multipliers that enforce the orthogonality
constraints onto the gradient as well as the orthogonalisation of the orbitals is done in the
coefficient distribution scheme. A global reduction sum is then used to sum the contributions
to obtain the correct matrix. Such sums can easily be performed with BLAS-LAPACK
routines. Switch back and forth between the orbital distribution scheme and the coefficient
distribution scheme is done by the MPI global transposition routine MPI ALLTOALL(V). For
parallel computers where the cross sectional bandwidth scales well with the number of
processors this global transposition does not require much CPU time. Another time-
consuming communication is the global reduction sum required to obtain the total charge
distribution from the partial charge distribution of the individual orbital.

MPI parallelisation performances. Architecture dependence
The parallelisation scheme of the code is tested since its first version. Since MPI
communications do not interfere with calculations, as far as the computational workload is
more demanding than time needed for communication, the overall efficiency is always higher
than 88%, also for large systems with a large number of processors.

Figure 48: Comparison of the performances of BigDFT on different platforms.

Runs on CCRT machine are worse in scalability but better in performances than runs on
CSCS one (1.6 to 2.3 times faster). French CCRT Titane platform (Bull Novascale R422 [76])
is compared to Swiss Rosa Cray XT5 [8]. The latter have better performances for
communication, and the scalability performances are quite good. However, from the « timeto-
solution » viewpoint, the former is about two times faster. This is mainly related to better
performances of the linear algebra libraries (Intel MKL [77] compared to Istanbul linear
algebra) and of the processor.

OpenMP parallelisation
In the parallelisation scheme of the BigDFT code another level of parallelisation was added
via OpenMP directives. All the convolutions and the linear algebra part can be executed in
multi-threaded mode. This adds further flexibility to the parallelisation scheme. Several tests
and improvements have been performed to stabilise the behaviour of the code in multilevel

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 55

MPI/OpenMP parallelisation. At present, optimal performances can be reached by associating
one MPI process per CPU, or even one MPI per node, depending on the network and MPI
library performances. This has been possible also thanks to recent improvements of the
OpenMP implementation of the compilers.

Figure 49: Speedup of OMP threaded BigDFT code as a function of the number of MPI processes. The
test system is a B80 cagem and the machine is Swiss CSCS Palu (Cray XT5, AMD Opteron).

GPU acceleration
The BigDFT code is well suited for GPU acceleration. On one hand the computational nature
of 3D separable convolutions may allow to write efficient routines, which may benefit of
GPU computational power. On the other hand, the parallelisation scheme of BigDFT code is
optimal in this sense: GPU can be used without affecting the nature of the communications
between the different MPI process. This is in the same spirit of the multi-level MPI/OpenMP
parallelisation. Porting has been done within the Kronos OpenCL standard, which allows for
multi-architecture acceleration.

In the following figure, systems of different sizes have been run in different conditions. The
response of the code in the case of an under-dimensioned calculation (where the amount of
communication is of the same order as the calculation) has been tested. This may happen if
the system is too small, or if the ratio between the runtime GigaFlop/s of the computations
and the cross-sectional bandwidth of the network is high.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 56

Figure 50: Relative speedup of the hybrid DFT code wrt the equivalent pure CPU run. In the top panel,
different runs for systems of increasing size have been done on a Intel X5472 3GHz (Harpertown)
machine. In the bottom panel, a given system has been tested with increasing number of processors on an
Intel X5570 2.93GHz (Nehalem) machine. The scaling efficiency of the calculation is also indicated. It
presents poor performances due to the fact that the system is too little for so many MPI processes. In the
right side of each panel, the same calculation have been done by accelerating the code via one Tesla S1070
card per CPU core used, for both architectures. The speedup is around a value of six for a Harpertown,
and around 3.5 for a Nehalem based calculation.

5.1.3 Excited States calculations: performance
Description of the test
The test case is a relaxed 2x2x1 supercell of wurtzite ZnO with an oxygen defect (one oxygen
removed). The cell contains 31 atoms, corresponding to 205 occupied electronic bands. The
Projector Augmented-Wave (PAW) method is used for all-electron precision, with a 2x2x2 k-
point grid in reciprocal space. A plasmon-pole model is used for the screening calculation.

For optimal load balancing the number of bands to be calculated was set to 717 and 1229 for
the screening calculation, and to 1024 for the self-energy.

5.1.3.1 Screening
The most time-consuming parts of the screening calculation are:

setup: Initialisation of run

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 57

This section reads and checks the header of the KSS file containing the wave functions and
electronic band energies and performs the setup of the basic objects needed for computing
the screening (pseudo-potentials, PAW objects, GW objects, etc.) This part is not
parallelised.

rdkss: Reading of the Kohn-Sham orbitals

This routine reads KSS file employing plain Fortran-IO. Each node opens the file and
reads a subset of bands. This routine does not scale and it is expected to have a detrimental
effect on the scaling.

qloop: Matrix inversion and write to file

This routine calculates the inverse dielectric matrix via matrix inversion and writes the
SCR file. The inversion is done in serial and the writing is performed by the master node
using Fortran-IO primitives. This component does not scale.

cchi0q0: Computation of the polarisability for q = 0

cchi0: Computation of the polarisability for non-zero q

These routines are parallelised over the empty bands. The implementation scales optimally
with the number of processors provided that the number of CPUs divides the number of
conduction states used in the calculation.

The tests were executed with ABINIT version 6.5.0.

To decrease the high demand of memory gwmem=10 was used, but still at least 16 nodes
(8GB memory each) were needed.

Results
The functions cchi0 and cchi0q0 scale well with the number of processes. This scaling is
nearly independent of the number of bands to be calculated, which is different for the total
speedup, as to be seen in Figure 51. Apparently the relative cost of the non-scaling functions
is higher when calculating fewer bands. Figure 52 compares the partitioning of the workload
for different numbers of bands. One can see that the fraction of the well scaling functions
(cchi0 and cchi0q0) is 99% when using 16 processes. On 512 processors this decreases to
79% in the 1229 bands case, and even to 64% for 717 bands.

Figure 51: Speedup for the scaling parts of the screening calculation and total speedup for different
numbers of bands

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 58

Figure 52: Relative cost of the most time-consuming code sections On the left for 717 bands, on the right
for 1229 bands.

5.1.3.2 Self-Energy
The calculations in the sigma-part can be decomposed into:

Init: Initialisation of the run

setup_sigma: Initial setup of the self-energy (not parallelised)

rdkss: Reading of the Kohn-Sham orbitals (wave function file)

This routine reads KSS file employing plain Fortran-IO. Each node opens the file and
reads a subset of bands. This routine does not scale and it is expected to have a detrimental
effect on the scaling.

csigme: Calculation of the self-energy matrix elements

There are two components to be calculated, the exchange contribution and the correlation
part. The computation of the correlation (the most time consuming part) should scale up to
the total number of bands occupied+unoccupied (Nband). For an optimal distribution the
number of processors should divide Nband.

Note, however, that the calculation of the exchange term will not scale anymore when the
number of processor exceeds the number of occupied bands (205 in our case). This should
explain part of the degradation of the speedup in csigme when Ncpu >= 128, this limitation
can be lifted by implementing a new algorithm that distributes the computation over
transitions instead of distributing bands.

Further there is the function Init2, whose contribution is negligible and thus will not be
discussed here.

The ABINIT version 6.10.1. was used.

For this test the parameter gwmem=11 was used, yielding faster but more memory-demanding
calculations. As a result it was not possible to run the problem on less than 4 nodes, each
featuring 8GB of memory.

Results
As to be seen in Figure 53, the only function scaling well is csigme, which takes most of the
computation time when using a small number of processes (Figure 54). This changes rapidly,
decreasing from 99% to 33% when going from 4 to 512 processes. In particular rdkss takes
over a lot of time.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 59

The resulting total speedup is quite good up to 64 processes, where still an efficiency of 67%
can be reached, but decays quickly beyond that point, reaching only 16% at 512 processes.

This result can be expected due to the small number of bands (1024) to be calculated, giving
only two bands per processor. Note that rdkss (which acts in serial) starts to take up a
significant amount of the calculation when the number of processor is comparable to the
number of bands.

Figure 53: Speedup for the screening part and its most costly sections

Figure 54: Relative amount of wall clock time for the partitioning of the sigma calculation.

5.2 Quantum ESPRESSO

5.2.1 Description of the code
Quantum ESPRESSO is an integrated suite of computer codes based on density functional
theory, plane waves, and pseudo-potentials eparable, norm conserving and ultrasoft and
projector augmented waves. The acronym ESPRESSO stands for opEn Source Package for
Research in Electronic Structure, Simulation, and Optimisation. It is freely available under the
terms of the GNU General Public License (GPL). It builds upon newly restructured

