

Xavier Gonze, Université catholique de Louvain François Jollet, CEA, DAM-DIF, Bruyères le Châtel

Thanks to > 50 ABINIT contributors ...

1

The ABINIT project

What is **ABINIT**?

http://www.abinit.org

ABINIT is a software suite to calculate the optical, mechanical, vibrational and other observable properties of materials. Starting from the quantum equations of **density functional theory** (DFT), you can build up to advanced applications with **perturbation theories** based on DFT and many-body Green's functions (GW and DMFT).

ABINIT can calculate molecules, nanostructures, and solids with any chemical composition and comes with several complete and robust tables of **atomic potentials**

The ABINIT software project

Ideas (1997) :

- 1) Softwares for first-principles simulations are more and more complex : needs a worldwide collaboration, of specialized, complementary, groups
- 2) Linux software development : 'free software' model

Now (2019) :

>2000 registered people on the forum
800 kLines of F90 + many python scripts (abipy)
1000 automatic tests
about 50 contributors to ABINITv8

Last release v8.10 used in this school http://www.abinit.org

Avaialable freely (GPL, like Linux)

ABINIT milestones

- Precursor : the Corning PW code (commercialized 1992-1995 by Biosym)
- 1997 : beginning of the ABINIT project
- Dec 2000 : release of ABINITv3 under the GNU General Public License (GPL)
- Nov 2002 May 2017 : 8 international ABINIT developer workshops (between 40 and 60 participants each)
- Jan 2010 : launch of the Forum

Major active contributors:

- Université Catholique de Louvain la Neuve (UCL)
- CEA Bruyères le Châtel
- Université de Liège (ULG)

_				
	•	•	•	

ALCONTROL OF	Contents lists available at ScienceDirect	COMPUTER PHYSICS COMMUNICATIONS
	Computer Physics Communications	
-I SEVIER	journal homepage: www.elsevier.com/locate/cpc	
ecent develop	ments in the ABINIT software package	Cross Mar
ecent develop	ments in the ABINIT software package	
Gonze ^{a,b} , F. Iollet	^{C+} , F. Abreu Araujo ^{a,1} , D. Adams ^{C2} , B. Amadon ^c , T. Applencourt ^{C3} ,	
Audouze ^{C,4} , JM.	Beuken 40, J. Bieder ^c , A. Bokhanchuk ^{cl} , E. Bousquet ^e , F. Bruneval ¹ ,	
Audouze ^{C,4} , JM. Caliste ^g , M. Côté Dorado ^c , C. Espej	Beuken ^{4,0} , J. Bieder ^c , A. Bokhanchuk ^{4,4} , E. Bousquet ^e , F. Bruneval ¹ , ¹ , F. Dahm ^c , F. Da Pieve ^{a,b} , M. Delaveau ^c , M. Di Gennaro ^{e,b} , ³ , G. Geneste ^c , L. Genovese ^g , A. Gerossier ^c , M. Giantomassi ^{a,b} ,	
Audouze ^{C,4} , JM. Caliste ^g , M. Côté Dorado ^c , C. Espej Gillet ^{a,b} , D.R. Han Levitt ^{C,5} , A. Lherb	Beuken ²⁰ , J. Bieder ^c , A. Bokhanchuk ²¹ , E. Bousquet ^e , F. Bruneval ¹ , ^h , F. Dahm ^c , F. Da Pieve ^{2,b} , M. Delaveau ^c , M. Di Gennaro ^{e,b} , ^b , ^w , G. Geneste ^c , L. Genovese ^g , A. Gerossier ^c , M. Giantomassi ^{2,b} , lann ^{pa} , L. He ^{m,n} , G. Jomard ^T , J. Laflamme Janssen ^{2,b} , S. Le Roux ^{2,b} , ier ^{2,b} , F. Liu ^o , I. Lukačević ^u , A. Martin ^c , C. Martins ^{c,6} , M.J.T. Oliveira ^{1,b} ,	

The "Free" software concept

Free for freedom (also price ...)

- freedom 1 : unlimited use for any purpose
- freedom 2 : study and modify for your needs (need source access !)
- o freedom 3 : copy
- freedom 4 : distribute modifications
- From copyright to freedom ("copyleft")
 - copyright allows licensing
 - o licenses grants freedom

ABINIT pioneered the use of the GPL « Free software license » in the computational condensed matter community (2000)

ABINIT is tested and can be installed on many OS

Lecture: Installation of ABINIT Monday afternoon

Distributive developments

- How to secure existing capabilitites despite the development efforts (by rather diverse groups) and the associated bug generation ?
- Around 1000 automatic tests have been set up, and new ones are added for securing each new feature
 - in general, each last a dozen of seconds on a PC
 - they examine "all" capabilities of ABINIT
 - the output is automatically compared to a reference file
 - these tests can be used as examples for beginners
- A « farm » of platforms is used for testing thanks to nightly builds
- The code is developped using « git ». Coding rules are to be respected.

Density-functional theory (DFT)

ABINIT solves the Schrödinger equation in the frame of the DFT.

Quantum objects : wavefunctions for interacting particles

$$\Psi(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3,...,\mathbf{r}_N,t)$$

Hohenberg & Kohn (1964), Kohn & Sham (1965) :

DFT : set of wavefunctions for non-interacting particles $\psi_1(\mathbf{r},t), \psi_2(\mathbf{r},t), ..., \psi_N(\mathbf{r},t)$

W. Kohn, chemistry Nobel prize 1998

The Kohn-Sham orbitals and eigenvalues

Non-interacting electrons in the Kohn-Sham potential :

$$\left(-\frac{1}{2}\nabla^2 + V_{\rm KS}(\mathbf{r})\right)\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r})$$

Density
$$n(\mathbf{r}) = \sum_{i} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})$$

 $V_{\text{KS}}(\mathbf{r}) = V_{ext}(\mathbf{r}) + \underbrace{\int \frac{n(\mathbf{r}_{1})}{|\mathbf{r}_{1} - \mathbf{r}|} d\mathbf{r}_{1}}_{\text{Hartree potential}} + \underbrace{\frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}}_{\text{Exchange-correlation potential}}$

To be solved self-consistently !

ABINIT capabilities

The ABINIT capabilities: basis

Wavefunctions ψ can be developped on a basis which is...

Localized

Spherical Harmonics, gaussians,...

Delocalized

Plane waves, ...

Adaptive

All-electron approaches

- \checkmark Small number of elements in the basis
- ✓ All the electrons can be
- Results are accurate, calculations are « heavy »
- \checkmark The basis moves with the atoms

Pseudopotential approaches

- ✓ Large number of elements in the basis to account for localised wavefunctions
- \checkmark Convergency is easily controlled
- ✓ Approached results as the core electrons are « pseudized »

The ABINIT capabilities: pseudopotentials

- 1979-1982: pseudos BHS (Bachelet, Hamann, Schlüter)
- 1982: pseudos KB (Kleinman ,Bylander)
- 1990: pseudos MT (Martins, Troullier)
- 1991: ultrasoft pseudos (Vanderbilt)
- 1994: Projector Augmented-Wave PAW (P. Bloechl)

Lecture: Plane wave based DFT Tuesday morning

The ABINIT capabilities: magnetism

When the spin of the electron is taken into account,

$$|\Psi_{n}\rangle \text{ becomes } |\Psi_{n}^{\alpha}\rangle = \begin{pmatrix} |\Psi_{n}^{1}\rangle \\ |\Psi_{n}^{2}\rangle \end{pmatrix} \qquad H \text{ becomes } H^{\alpha\beta} = \begin{pmatrix} H^{11} & H^{12} \\ H^{21} & H^{22} \end{pmatrix}$$
The wave equation becomes:
$$\sum_{\beta} H^{\alpha\beta} |\Psi_{n}^{\beta}\rangle = \varepsilon_{n}O|\Psi_{n}^{\alpha}\rangle$$
The density becomes:
$$n^{\alpha\beta}(r) = \sum_{n} \Psi_{n}^{\alpha^{*}}(r) \cdot \Psi_{n}^{\beta}(r)$$
Lecture: Magnetism Tuesday afternoon
In the case of colinear magnetism:
$$\alpha = \uparrow, \downarrow \qquad H^{12} = H^{21} = 0$$
In the case of colinear magnetism:
$$n = n^{\uparrow} + n^{\downarrow}$$

$$\Rightarrow \text{ parallelisation over the spins, at the same level of the k points (×2)$$

The ABINIT capabilities: parallelism

Parallelisation over k points: easy and available from a long time

interesting for metals

Parallelisation over plane waves: requires a parallel 3-dim FFT

Parallelisation over bands: requires a block eigensolver

Lecture:

parallelism Wednesday morning

ABINIT v8 capabilities (I)

Pseudopotentials/Plane Waves

 + Projector Augmented Waves (for selected capabilities)
 Many pseudopotential types, different PAW generators (ATOMPAW is shipped with ABINIT)

+ Wavelets (BIGDFT effort)

Density functionals : LDA, GGA (many : PBE and variations, HCTH, ...), LDA+U (or GGA+U), Van Der Waals corrected functionals (Grimme),

hybrid functionals + some advanced functionals (exact exchange + RPA or ...)

LR-TDDFT for finite systems excitation energies (Casida)

GW for accurate electronic eigenenergies

(4 plasmon pole models or contour integration ; non-self-consistent / partly selfconsistent / quasiparticle self-consistent ; spin-polarized)

Bethe-Salpeter for accurate optical properties calculations

DMFT for correlated orbitals

Lecture: Advanced features Thursday afternoon

ABINIT v8 capabilities (II)

Insulators/metals - smearings : Fermi, Gaussian, Gauss-Hermite ...

Collinear spin / non-collinear spin / spin-orbit coupling

Forces, stresses, automatic optimisation of atomic positions and unit cell parameters (Broyden and Molecular dynamics with damping)

Molecular dynamics (Verlet or Numerov), Nosé thermostat, Langevin dynamics

Path-Integral Molecular Dynamics, String / NEB method for saddle points

Susceptibility matrix by sum over states Optical (linear + non-linear) spectra Polarization, finite electric field calculations Electric field gradients, magnetic shielding (NMR) Positron lifetime

Lecture: Structural relaxatio Molecular dynamics Wednesday afternoon

Symmetry analyser (database of the 230 spatial groups and the 1191 Shubnikov magnetic groups)

ABINIT v8 capabilities (III)

Density-Functional Perturbation Theory :

- Responses to atomic displacements, to static homogeneous electric field, to strain perturbations
- Second-order derivatives of the energy, giving direct access to : dynamical matrices at any q, phonon frequencies, force constants ; phonon DOS, thermodynamic properties (quasi-harmonic approximation) ; dielectric tensor, Born effective charges ; elastic constants, internal strain ; piezoelectric tensor ...
 Matrix elements, giving direct eccess to : Thursday afternoon
- Matrix elements, giving direct access to :
 electron-phonon coupling, deformation potentials, superconductivity
- Non-linear responses thanks to the 2n+1 theorem at present : non-linear dielectric susceptibility; Raman cross-section ; electro-optic tensor

Structure and documentation

External files in a ABINIT run

Post-processing and analysis Thursday morning

The SCF cycle

Resolution of a general eigenvalue problem
$$\widetilde{H} | \widetilde{\Psi}_n \rangle = \varepsilon_n O | \widetilde{\Psi}_n \rangle$$

In case of plane wave basis (PAW):

A basic input file : dihydrogen (I)

H2 molecule in a big box

# Definition of the unit	cell
acell 10 10 10	# The keyword "acell" refers to the
	# lengths of the primitive vectors (default in Bohr)
# Definition of the ator	m types
ntypat 1	# There is only one type of atom
znucl 1	# The keyword "znucl" refers to the atomic number of the
	<pre># possible type(s) of atom. The pseudopotential(s)</pre>
	# mentioned in the "filenames" file must correspond
	# to the type(s) of atom. Here, the only type is Hydrogen.
# Definition of the ator	ns
natom 2	# There are two atoms
typat 1 1	# They both are of type 1, that is, Hydrogen
xcart	# This keyword indicate that the location of the atoms
	# will follow, one triplet of number for each atom
-0.7 0.0 0.0	# Triplet giving the cartesian coordinates of atom 1, in Bohr
0.7 0.0 0.0	# Triplet giving the cartesian coordinates of atom 2, in Bohr

A basic input file : dihydrogen (II)

# Definition of the	planewave basis set
ecut 10.0	# Maximal plane-wave kinetic energy cut-off, in Hartree
# Definition of the	k-point grid
kptopt 0	# Enter the k points manually
nkpt 1	# Only one k point is needed for isolated system,
	# taken by default to be 0.0 0.0 0.0
#Definition of the	SCF (self-consistent field) procedure
nstep 10	# Maximal number of SCF cycles
toldfe 1.0d-6	# Will stop when, twice in a row, the difference
	# between two consecutive evaluations of total energy
	# differ by less than toldfe (default in Hartree)
diemac 2.0	# Although this is not mandatory, it is worth to
	# precondition the SCF cycle. The model dielectric
	# function used as the standard preconditioner
	# is described in the "dielng" input variable section.
	# Here, we follow the prescriptions for molecules
	# in a big box

Documentation

What is ABINIT?

ABINIT is a software suite to calculate the optical, mechanical, vibrational, and other observable properties of materials. Starting from the quantum equations of **density functional theory**, you can build up to advanced applications with **perturbation theories** based on DFT, and **many-body Green's functions** (GW and DMFT)...

ABINIT tutorial : layout + dependencies

A few references

• Description of the ABINIT project and ABINIT capabilities

- X. Gonze et al, Comput. Mat. Science 25, 478 (2002)
- X. Gonze et al, Z. Kristallogr. 220, 558 (2005)
- X. Gonze et al, Comp. Phys. Comm. <u>180</u>, 2582 (2009)
- X. Gonze et al, Comp. Phys. Comm. <u>205</u>, 106 (2016)
- Software engineering and management techniques used in ABINIT
 - Y. Pouillon et al, Computing in Science and Engineering <u>13</u>, 62 (2011)
- Focused papers on specific implementations within ABINIT
 - (e.g. PAW, parallelism)
 - M. Torrent et al, Comput. Mat. Science 42, 337 (2008)
 - F. Bottin et al, Comp. Mat. Science <u>42</u>, 329 (2008)

More references in the other parts of this tutorial ...

