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OUTLINE

What are super-computers made of?

Parallel computer technologies
Scalar and manycore processors

How to measure the parallel efficiency

Speedup, efficiency, scalability

ABINIT parallelization strategy

Time consuming parts
Iterative diagonalization algorithm

Parallelism inside ABINIT

Paralelization levels
Workload distribution

Performance (examples)



WHAT ARE SUPER-COMPUTERS
MADE OF?

HOW TO USE THEM?
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WHAT IS PARALLEL COMPUTING?

Easy to say…

Simultaneous use of multiple compute resources
to solve a computational problem

… but not so easy to implement!

The problem has to be solved in multiple parts
which can be solved concurrently
Each part is associated to a series of instructions;
instructions are compute processes or memory transfers

Instructions of each part are executed simultaneously
on different Compute Processing Units
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IMPROVE PERFORMANCE OF COMPUTE
PROCESSING

Traditional Measure of computing performance: FLOPS
FLoating point OPerations per Second

How to increase the FLOPS of a computer?
Do more operations per second
➝ Increase the frequency!

Do floating point operations simultaneously (overlap)
➝ Vectorization!
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THE POWER COST OF FREQUENCY

Power increase as Frequency3

➝ Clock rate is limited

Power is a limited factor for supercomputers

➝ Around 3-5W per CPU nowadays

Multiple slower devices are preferable than one superfast device!

➝ Multiples computing units per CPU!

More performance with less power?

➝ software problem!
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VECTORIZATION

What is vector computing?

Vectorization can be considered as a “hardware parallelization”,
directly implemented in the processor unit.

It generalizes operations on scalars to apply to vectors.

Operations apply at once to an entire set of values.

The processor uses a specific set of instructions:
Advanced Vector Extensions (AVX)

The size of vectors is hardware dependent.
Recent processors use 512 bits vectors
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VECTORIZATION

Common vector operations (Implemented in all Hardware)

Addition, Multiplication

FMA (Fuse Multiply-Add)     a  ⟵ a  +  ( b x c )

Example for addition

Size of “vector” in recent hardware is increasing
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VECTORIZATION

Vectorization improve performance but…

Needs more transistors per surface unit in the chip

Power and heat accumulation increase linearly with vector size

➝ Frequency needs to be reduced!

Needs suitable code!

Needs code changes to help the compiler!
➝ Beware to data interdependency

Order of operations is non deterministic
➝ Round-off errors are unpredictable
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IMPROVE PERFORMANCE OF MEMORY TRANSFER

Traditional Measure of memory performance:
Access time (ps)

Transfer speed, bandwidth (Byte/s)

Latency (ns)

How to speed up memory access?
Speed up the access

➝ Change the technology

➝ Implant the memory closer to processing unit!

Increase bandwidth

➝ Increase memory clock rate, increase number of “channels”!

Decrease the latency

➝ Improve “switches”, improve network speed
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THE POWER COST OF MEMORY TRANSFER

Some facts about memory transfer:
Bandwidths : CPU cache: 40 GB/s, RAM: 20 GB/s, network: 3.5 GB/s

Memory evolves less than computational power:

90’s: 0.25 FLOPS/Byte transferred, nowadays: 100/Byte transferred

Cost of data movement
Computation of a FMA costs 50 pJ

Move data in RAM costs 2 nJ

Communicating data (network) costs 3 nJ

Random vs strided access
Random access is very low ~ equivalent to 200 CPU cycles

Strided access triggers prefetchers, reduces the latency

Recomputing data is faster than fetching it randomly in memory
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HOW TO DISTRIBUTE DATA IN MEMORY

Parallelism
HPC

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

GPU

Practical cases

Conclusion

How to parallelize your data?

Distributed Memory

Private Memory

Processors operate
independently

Data transfer should be
programmed explicitly
(MPI)

Relies (also) on network
performances

Shared Memory

Memory is common to all
processors

Threads operate
concurrently on data

Relies on bandwidth
perfomances

Memory operations are crucial for parallelism

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese
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WHAT DO WE WANT?

If we could have N processing units (compute+memory),
we would like one calculation be be N times faster!

2 workers are twice faster than one!
What is a worker on a (super)computer?
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A BASIC PROCESSOR DESIGN (OLD FASHIONED)

Arithmetic and Logic Unit
Floating-Point Unit
Memory (small)
Controllers
…
RAM is far from the processor

1 processor (CPU) has 1 core!
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BUILDING A SUPERCOMPUTER WITH OLD CPUS

Message Passing paradigm

Distributed memory model: process 
X cannot access RAM 

For 100,000 CPUS, need for a very 
efficient communication network!

MPI = Message Passing Interface
A communication protocol

How to use it?

Install a MPI library and
compile the code with it.

Launch:
mpirun –n N executable
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A MODERN PROCESSOR DESIGN: « MANYCORE »

1 processor has several cores
(nowadays: 4 to 68)

1 core = ALU/FPU/cache memory
Each core may have 2 threads 
(concurrent tasks)
All the cores share the RAM memory
Core can be slow but highly vectorizable

Note : the core may be grouped by “sockets”. 
Sharing memory is easy inside a socket; it is 
not from one socket to the other
⟶ Non Uniform Memory Access (NUMA)
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BUILDING A SUPERCOMPUTER WITH MODERN CPUS

Hybrid parallelism

Distributed memory between nodes

Shared memory inside a node
(beware to NUMA effect)

Need to know the computer 
architecture to run a code!

How to use it?

Select the number of concurrent
tasks on a node (openMP):
export OMP_NUM_THREADS=x

Launch the code in hybrid mode:
mpirun –n N –c x executable

Core 0 – Tasks 1-2
Core 1 – Tasks 3-4
Core 2 – Tasks 5-6
…                    

RAM 0

Node 0 - Process 0
Core 0 – Tasks 1-2
Core 1 – Tasks 3-4
Core 2 – Tasks 5-6
…                    

RAM 1

Node 1 - Process 1
Core 0 – Tasks 1-2
Core 1 – Tasks 3-4
Core 2 – Tasks 5-6
…                    

RAM 2

Node 2 - Process 2

MPI MPI
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SUPER-COMPUTERS EFFICIENCY
INCREASES CONTINUOUSLY …

Super-computers 
world TOP 500
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...CODES MUST BE IN CONTINUOUS EVOLUTION



HOW TO MEASURE THE EFFICIENCY
OF A CODE ON A SUPER-COMPUTER?
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3 WAYS TO DEAL WITH PARALLELISM

Speedup

Scaling efficiency

Scalability

These performance indicators will tell us how 
good/efficient the parallelism is.
Is the code adapted to massive parallelism?
Do we correctly use it?
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SPEEDUP
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SPEEDUP – AMDAHL’S LAW
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SPEEDUP – AMDAHL’S LAW
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SCALING EFFICIENCY
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SCALABILITY
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TEST ON MATRIX-MATRIX MULTIPLICATION



ABINIT PARALLELIZATION STRATEGY
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ABINIT – WHERE IS SPENT TIME?
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ABINIT – WHERE IS SPENT TIME?
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ABINIT – WHERE IS SPENT TIME?
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MOST TIME CONSUMING PARTS

Use timopt=-3 in input file to obtain detailed summary
of time spent in ABINIT

A typical time analysis:

Parallelism efficiency is dominated by
Algorithm to find eigenvectors
Hamiltonian application

Overview Parallelism inside Abinit Practical use of parallelization OpenMP in abinit

Most time consuming parts in Abinit

Use timopt = -3 to obtained a details summuray of time spent
inside Abinit
Example:
• vtorho: v! ⇢(r) (98%)

• vtowfk: v! | ki : Ĥk| ki= "| ki (97%)
I cgwf, lobpcg: Diagonalization (7%)
I getghc: Ĥ| i (90%)

• mkrho: n(r) =
PN

i h i (r)| i (r)i

• rhotov: n(r)! v

J. BiederAbinitHands-on 2017, 2017/02/01
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INTERNAL ALGORITHME SCALABILIYTY

Target computations : 1000<Nband<50 000,   NPW~100 000…250 000

Direct diagonalization unachievable (~1012)

In search of the eigenvectors associated with the lowest eigenvalues

Need an iterative algorithm

Different kind of algorithms but the elementary bricks are the same:

Hamiltonian application (linear algebra, FFT) ➢ computation

Rayleigh-Ritz procedure (linear algebra, diago, ortho) ➢ communication
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ABINIT
1995

ABINIT
2007

ABINIT
2016

ABINIT
2019

10 tasks
Conjugate gradient

1000 tasks
Block conjugate

gradient (LOBPCG)

15 000 tasks
Chebyshev filtering

100 000 tasks?
Slicing

Scalability of ABINIT internal algorithm

1 H application per iteration
1 complete orthogonalisation per iteration

1 H application per iteration
1 partial orthogonalisation per iteration
1 complete orthogonalisation

5 H applications per iteration
1 complete orthogonalisation

20 H applications per iteration
No orthogonalisation

INTERNAL ALGORITHME SCALABILITY
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ABINIT STRONG SCALING - 2016

Hamiltonian application
Linear algebra, FFT

Iterative solver (eigenvalues)
Without Hamiltonian application

Repartition of time in in a ground-state calculation
varying the number of band CPU cores
(MPI, strong scaling)

TEST CASE
A vacancy in a 108 atoms cell (gold)
Gamma k-point only, PAW
Computation of total energy and forces

2016
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1. Improve the scalability of the diagonalization algorithm
More calculation, less storage, less communications

2. Efficiently use the shared memory (openMP)

in a « medium grained » mode

Adapt the code to the hardware topology
Give longer tasks to the elementary computing units
Decrease the data movements

3. Externalize the elementary operations
Express the physics in terms of elementary operations
Use vendor (or optimized) libraries

4. Add an abstraction layer
Isolate low level optimized operations

Decrease Time To Solution

ABINIT ON MANY CORE ARCHITECTURES,
STRATEGY
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ABINIT PERFORMANCES - 2019

Uranium
128 atoms

1600 bands (3200 electrons)

Old implementation
MPI only

CEA-TGCC Curie
Nehalem

16 cores/node

Hamiltonian

Iterative solver

0%

20%

40%

60%

80%

100%

96	cores 192	cores 384	cores 768	cores 1536	cores

ABINIT	- 24	threads

CEA Tera1000-2
Intel KNL

64 cores/node

2018

New implementation
MPI x 24 threads

Iterative
solver

Hamiltonian

A perfect example 

of Amdahl’s law
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FROM DISTRIBUTED TO HYBRID PARALLELISM

Gallium oxide Ga2O3

1960 atoms (17400 electrons)
Time per SCF iteration

TGCC –Joliot-Curie
Intel Skylake – 48 cores/node – 2 sockets

TGCC – Curie
Intel Nehalem

Titanium
512 atoms (8200 electrons)

Speedup

Distributed (pure MPI) Hybrid (MPI+openMP)

2016 2019



PARALLELISM INSIDE ABINIT
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ELECTRONIC DENSITY AND PARALLELISM

Electronic density formula within PAW+plane-wave DFT

Bands k vectors Plane wavesParallelization levels: Spins Atoms
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Parallel speedup: ??? Linear PoorLinear Linear

Each k independent from the others ⟶ Try first parallelization over k points

In case of polarization (nsppol=2) ⟶ parallelization over spins
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PARALLELIZATION OF EIGENSOLVER

Eigenvectors are orthogonal to each other ⟶ non trivial parallelization

Can parallelize over bands and/or plane waves

2 kinds of algorithms :
- Treat blocks of eigenvectors concurrently
- Filter independently sets of eigenvector

Possible choices of algorithm:

Conjugate Gradient
Default when k-points parallelization only

Block conjugate gradient (LOBPCG)
Default when Band-FFT parallelization

Chebyshev Filtering
For a very large number of processors
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ABINIT INPUT VARIABLES FOR PARALLELISM

Choice of iterative eigensover

wfoptalg: 0 ® conjugate gradient

114 ® block conjugate gradient

1 ® Chebyshev filtering

By default, only parallelization over k/spins is activated

paral_kgb: 1 ® To activate k/plane-waves/bands

parallelism

4 basic input variables to control how things are distributed

npkpt npband bandpp npfft or tasks (openMP) 

# procs for

k-points

# procs for

bands

bands

per process

# procs or # tasks

for plane-wave/FFT
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PARALLELISM OF BLOCKED ALGORITHM (LOBPCG)

Diagonalization per block:

Each block of eigenvectors is concurrently diagonalized
by the npband processes. One bloc after the other.

Each process handles bandpp bands
® The size of a bloc is bandpp x npband

⍅bandpp⍆

1 … npband2
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PARALLELISM OF BLOCKED ALGORITHM (LOBPCG)

The accuracy of the diagonalization depends on the block size:

Eigenvectors are orthogonal inside a block;
Then blocks are orthogonalized
The orthogonalization is better for large blocks

® ABINIT converges better with large blocks

The speed of the diagonalization depends on the block size:

Blocks are diagonalized one after the other
Parallelization is more efficient for one block

® ABINIT converges faster with large blocks
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TWO INTERNAL REPRESENTATIONS

Bands are distributed in memory.
Plane waves (FFT components) are distributed in memory

To perform a scalar product Ψ" Ψ#
a process needs the Ψ" and Ψ# vectors and a few plane-waves

To perform a Fast Fourier Transform (FFT)
a process need all the components of a vector Ψ"
We change the representation by applying a transposition
® Needs a lot of communications

…

Bands

Pl
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Bands

Pl
an
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FIRST SCENARIO: PURE MPI

First, if possible, parallelize over k-points/spins (npkpt)

Then parallelize the diagonalization over npband x npfft processes

Each block diagonalization is made by npband processes in parallel

Each process handles bandpp bands sequentially

Scalar products and FFTs are done by npfft processes

Distribute the workload as follows:

npfft should be >1, but should be small enough (<10)

npband sets the # of procs: nproc = npkpt x npband x npfft

Increase the convergence speed by increasing the block size
® increase bandpp but not to much (sequential part)

nband has to be a multiple of npband x bandpp

In any case, the ideal distribution is system dependent!
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2ND SCENARIO: HYBRID MPI+OPENMP - 1

Launch the calculation using a maximum number of openMP tasks,
Ideally the size of a “socket” on the compute node
export OMP_NUM_THREADS=xx

First, if possible, distribute MPI processes over k-points/spins (npkpt)

Then distribute the reminding MPI processes over bands (npband)

Each block diagonalization is made by npband processes in parallel

Each process handles bandpp bands in parallel using the openMP tasks

Scalar products and FFTs are done by the openMP tasks (npfft not used)

nproc = npkpt x npband
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2ND SCENARIO: HYBRID MPI+OPENMP - 2

Distribute the workload as follows:

npband x bandpp (size of a block) should be maximalized

and has to divide the number of bands (nband)
Ideally it should be nband or nband/2 or nband/3
bandpp has to be a multiple of the number of openMP tasks

nband has to be a multiple of npband x bandpp

In any case, the ideal distribution is system dependent!
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WORKLOAD DISTRIBUTION – KEY IDEAS

Main rules (for large systems):

Use openMP as soon as possible; maximalize the # threads

Use k-points/spins parallelism first

Maximalize the block size (increase npband and bandpp)

Follow the multiplicity rules for nband, nthreads, npband, bandpp…

Make performance comparisons for every system

Use autoparal and max_ncpus variable as a starting guess:

autoparal=1: ABINIT tries to find automatically

a suitable distribution

max_ncpus=N: ABINIT prints all possible distributions

with nproc<=N and stops
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ABINIT+MPI+OPENMP - EXAMPLES

Test case
64 Pu atoms - 1200 electronic bands
Tera1000 CEA super-computer (Intel KNL)

# MPI proc.
= npband

# threads
= bandpp # blocks CPU (sec.)

36 32 1 188

36 16 2 205

36 8 4 231

36 4 8 360

# MPI proc.
= npband

# threads
= bandpp # blocks CPU (sec.)

570 2 1 1091

285 4 1 918

143 8 1 320

72 16 1 248
36 32 1 188

18 64 1 197

Varying the block size

Changing the MPI – openMP distribution
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OTHER LEVELS OF PARALLELIZATION

npimage ® For images : NEB, string method, PIMD

npspinor ® spinorial components in case of
spin-orbit coupling

nppert ® in a DFPT calculation (response) to parallelize
over perturbations

nphf ® In case of Hartree-Fock calculation

paral_atom ® Enable of disable parallelization over atoms
(automatically set up)



PERFORMANCES
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SCALAR VS MANYCORE ARCHITECTURE

Test case
64 Pu atoms
1200 electronic bands
Tera1000 CEA supercomputer

Nehalem Haswell KNL
Process x threads 500 x 1 500 x 1 50 x 4

Number of nodes 63 16 3

CPU time

Old implementation

45 min.

36 iterations

27 min.

36 iterations

N/A

CPU time

New implementation

10 min.

8 iterations

5 min. 

8 iterations

8 min.

8 iterations
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ABINIT –MEDIUM SIZE SYSTEM

Gallium oxide Ga2O3

1960 atoms
8700 bands (17400 electrons) 

Time per SCF iteration

Bands + FFT parallelism only
Can be mixed to other parallelism levels

TGCC –Joliot-Curie
Intel Skylake

48 cores/node – 2 sockets



Parallelization in ABINIT  |  Abinit School 2019

ABINIT - LARGE SYSTEM

Gallium oxide Ga2O3

4160 atoms
18400 bands (36800 electrons) 

Time per SCF iteration

Bands + FFT parallelism only
Can be mixed to other parallelism levels

TGCC –Joliot-Curie
Intel Skylake

48 cores/node – 2 sockets



CONCLUSION
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ABINIT IN PARALLEL – KEYS POINTS

ABINIT parallel efficiency is strongly system dependent

It is highly recommended to use hybrid parallelism

ABINIT cannot be used without a minimum knowledge of…

The computer architecture (nodes, CPUs/node, …)

The iterative diagonalization algorithm

autoparal keyword can hep
But this is only a starting point!
Manual tuning is always better
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