lesson hpc for Cobalt 22/01/2019 22:42

ABINIT
How to work on a supercomputer: Environment and job
submission

Example of the Cobalt supercomputer at TGCC (french computing center)

Content

1.1. The "module" command
1.2. The batch script

1.3. Handling of files

1.4. A script for abinit

First step: log on to the supercompter.
In a terminal window, enter : ssh -Y cobalt.ccc.cea.fr

At any time, you can type the machine.info command to access to the computer user's guide.

1.1. The "module" command

The Cobalt supercomputer use Environment Modules. The Environment Modules package provides for the dynamic
modification of a user's environment via modulefiles.

To familiarize yourself with this environment, you should first list the available modules with the command:
module avail

The module that are used now in your environment are given by the command: module list
First, lets clean your session by unloading all modules in memory:

module purge
Then, to use the ABINIT module, you just need to use the simple command:
module load abinit/8.12.0-beta

All software mandatory for ABINIT execution (dependendies) will be automatically loaded. You will have automatically
abinit in your path (try it by typing abinit --version!).

1.2. The batch script

On a supercomputer you cannot execute your ABINIT calculation directly by a simple command like abinit< files > log or
mpirun -n 200 abinit< files > log (for a parallel calculation). Job submissions and resources allocation are managed by a
specific environment. Special commands prefixed by ccc_ are provided to execute these operations (this is specific to the
TGCC computing center).

First, you need to write a script which will define a set of directives about your job and how to execute it. Then submit your
job on a given batch queue. Here is a typical script which you can write in a file called e.g. job.ls:

file:///Volumes/KEY-FAT/ABISCHOOL2019_MY_FILES/ABISCHOOL-SCRIPT-INSTALL/lesson_cobalt.html Page 1 sur 3

lesson hpc for Cobalt 22/01/2019 22:42

#!/bin/bash

export OMP_NUM_THREADS=1 Same number as in the "MSUB -c" line above

#MSUB -r MyJob # Name of the job (to be changed)
#MSUB -n 50 # Number of MPI processes to use
#MSUB -c 1 # Number of tasks per process to use
#MSUB -T 60 # Time limit in seconds
#MSUB -0 1ls_%I.o # Standard output. %I is the job id
#MSUB -e 1ls %I.e # Error output. %I is the job id
#MSUB -A dam00000 # For the ABINIT school only
#MSUB -E '--reservation=ABINITO1l' # For the ABINIT school only
set -x # list the commands during execution
#
#

1ls > output Execute job 1s

Note that the first 7 lines are commented with one #, so that they are not a part of the shell script. However the supercomputer
system read them and understand them.

The first 6 lines define the name of the task, the number of processors to use, the time limit of the job, the standard output and
error files.

Note: the number of processors used is equal to the number of processes times the number of tasks per process.

The 8th and 9th lines are specific to the ABINIT school:

- dam00000 is the project number of the school,
- ABINITO1 is the name of the set of CPU cores reserved for the school (change it to ABINIT02, ABINITO3... on next
days).

The rest of the file contains usual script commands in the bash langage. To execute this file, just launch:

ccc_msub job.ls

Various tools provides you information about your job. Just try them:

e ccc_mpp provides you information about the running of your job and gives you the BatchID of your job.
Note: job.Is run too fast to allow to see any information.

e ccc_mpeek is useful to have information about the job.
e ccc_mdel can be used to kill it during execution.

After the job is executed, you will find two new files in the current directory corresponding to the standard and error output
files. You can have a look to these two files to see if the job executed correctly.

1.3. Handling of files

Working on a supercomputer is qualitatively not different from working on a desktop computer. However, quantitatively, it is
completely different: As several processors are working at the same time, they might write a huge number of files on the
working directory. For his reason, it is all the more important to think a little bit about a correct handling of files. In particular
some filesystems are dedicated to supercomputing and other are not.

In particular, you must not execute ABINIT and produce results on your HOME, you must do it on the $CCCSCRATCHDIR
or SCCCWORKDIR which are fast I/O file systems.

Let's adopt a clean way to handle files and work in the SCCCWORKDIR file system.

file:///Volumes/KEY-FAT/ABISCHOOL2019_MY_FILES/ABISCHOOL-SCRIPT-INSTALL/lesson_cobalt.html Page 2 sur 3

lesson hpc for Cobalt

1.4. Trying ABINIT

Here is a typical script; you can copy it in a file called e.g. job.abinit:

22/01/2019 22:42

#!/bin/bash

#MSUB -r MyJob

#MSUB -n 8

#MSUB -c 1

#MSUB -T 60

#MSUB -0 1ls_%I.o

#MSUB -e 1ls %I.e

#MSUB -A dam00000

#MSUB -E '--reservation=ABINITO1l'
set -x

export OMP_NUM THREADS=1

module load abinit/8.12.0-beta

mkdir -p Work ; cd Work

H O OHHHHHRHHHRH

#

Name of the job (to be changed)
Number of MPI processes to use
Number of tasks per process to use
Time limit in seconds

Standard output. %I is the job id
Error output. $I is the job id
For the ABINIT school only

For the ABINIT school only

list the commands during execution

Same number as in the "MSUB -c" line above

Load ABINIT module (beta version fot this school)

cd $CCCWORKDIR/abinit-8.10.2/tests/tutorial/Input # Enter the tutorial directory (optional line)
Working directory for the tutorial (optional line)

ccc_mprun abinit < ../tbase3_x.files > log # Execute ABINIT in parallel

Read the script and try to understand all the steps...

Then create an new file named job.abinit.

To use this script, you just have to launch the following command:

e ccc_msub job.abinit
The job will execute ABINIT in parallel.

Have nice tutorials !

For more information about Cobalt environnement, type machine.info in a terminal...

file:///Volumes/KEY-FAT/ABISCHOOL2019_MY_FILES/ABISCHOOL-SCRIPT-INSTALL/lesson_cobalt.html

Page 3 sur 3

