
Chebyshev filtering for Abinit users

Antoine Levitt

August 20, 2014

Contents
1 When to use and not to use Chebfi 1

2 How to use Chebfi 1

3 Convergence 2

4 Chebfi vs LOBPCG 2

5 Performance 2
5.1 Environment . 2
5.2 Measures . 2

6 Tuning and trade-offs 3
6.1 nline . 3
6.2 np_slk . 3
6.3 npfft vs npband . 3
6.4 use_gemm_nonlop . 3
6.5 Memory . 4

1 When to use and not to use Chebfi
Chebyshev filtering (Chebfi) is a method to solve the linear eigenvalue problem, and can be used as
a SCF solver in Abinit. It was proposed for use in DFT by Zhou et al. [ZSTC06], and implemented
in Abinit by Levitt and Torrent [LT14].

The design goal is for Chebfi to replace LOBPCG as the solver of choice for large-scale com-
putations in Abinit. By performing less orthogonalizations and diagonalizations than LOBPCG,
scaling to higher processor counts is possible (see the experiments in [LT14]).

2 How to use Chebfi
Simply set wfoptalg to 1, and set the np* variables, as in LOBPCG. In particular, begin by setting
npkpt and npspinor to the maximum value possible: the tasks are mostly independent and the
speedup nearly optimal. As a starting point, for large processor counts, use npfft ≈ npband, and
np_slk = nband/10.

1

3 Convergence
Mostly due to the absence of a preconditionner in Chebfi, the convergence is sometimes worse than
with LOBPCG. In some cases the difference is unnoticeable, in others it might be uncompetitively
slow: try for yourself on your system! When convergence is poor, it is usually a good idea to use
more bands than strictly necessary, by increasing nband. This increases the cost per iteration but
improves convergence: a trade-off is needed. Note that the last bands will always converge very
slowly or not at all, by design: use nbdbuf to discard these when computing the wavefunction
residual.

4 Chebfi vs LOBPCG
Chebfi is usually faster per iteration than LOBPCG, up to factors of about 5 for high processor
counts. It is much less prone to instabilities and spurious NaNs. It is easier to tune: the options
bandpp and use_slk are not used, and the convergence behaviour does not depend on the paral-
lelization - the results are the same than with the serial version). On the other hand, for some
systems, Chebfi might be very slow to converge.

5 Performance

5.1 Environment

For good performance it is imperative to use optimized linear algebra libraries. On Intel systems,
MKL is a good choice. On other systems, use the vendor-provided library, or good free ones such
as OpenBLAS. Never use the BLAS/LAPACK fallback in Abinit.

Any good compiler with a reasonable level of optimization (gfortran or ifort with O2 or greater)
should be fine. You should also have a good MPI implementation.

For large computations, you need to have ScaLAPACK installed. You should also use the
optional ELPA library to speed up the diagonalizations.

FFTs are usually faster with the FFTW library: see fftalg.

5.2 Measures

Use the timopt variable to print a breakdown of time spent at the end of the output file. If
available, PAPI (papiopt) might give more precise measurments. You are looking for the bit that
looks like

Partitioning of chebfi
- chebfi 45.939 34.0 48.072 29.0 48

- chebfi(getghc) 27.306 20.2 28.015 16.9 240
- chebfi(opernla) 3.505 2.6 3.583 2.2 192
- chebfi(opernlb) 3.055 2.3 3.124 1.9 192
- chebfi(inv_s) 2.218 1.6 2.273 1.4 192
- chebfi(alltoall) 0.261 0.2 0.260 0.2 96
- chebfi(rotation) 2.089 1.5 2.146 1.3 48

2

- chebfi(subdiago) 1.552 1.2 2.596 1.6 48
- chebfi(subham) 1.000 0.7 1.024 0.6 48
- chebfi(residuals) 0.239 0.2 0.242 0.1 48
- chebfi(update_eigens) 0.226 0.2 0.220 0.1 48
- chebfi(sync) 3.045 2.3 3.068 1.9 96

The interesting part is the third column, that gives the percent of total time spent in specific
routines. The code scales well (is not limited by communications) when getghc,opernla, opernlb
and inv_s dominate. It has stopped scaling when the communications dominate : alltoall,
subdiago and subham. A large sync is usually the sign of a suboptimal MPI implementation.

Also interesting is the breakdown of getghc, that gives the time spent in Fourier and nonlocal
operator applications.
Partitioning of getghc

- getghc 26.335 19.5 27.025 16.3 240

- fourwf%getghc 15.291 11.3 15.692 9.5 240
- nonlop%getghc 10.849 8.0 11.138 6.7 240
- getghc-other 0.195 0.1 0.195 0.1 -12

For large computations, the time spent in the FFT (fourwf) operations should be small.

6 Tuning and trade-offs

6.1 nline

This option controls the number of applications of the Hamiltonian per band per iteration. If it is
too small, Rayleigh-Ritz steps are too frequent, which degrades parallel scaling. If it is too large,
too much time is spent optimizing wavefunctions, while the density is not converged. Don’t increase
it too much (above 10), or instabilities will occur.

6.2 np_slk

np_slk is the number of processors involved in ScaLAPACK calls. It might be interesting to set
this to a lower value than the total number of processors, as diagonalization stops scaling well
before the rest of the code.

Try varying this and monitoring the subdiago metric. If the time spent in subham is too high,
try reducing np_slk. A characteristic value is around nband/10, but your mileage may vary.

6.3 npfft vs npband

For large computations, it is usually a good idea to use as large a value of npfft as possible (the
maximum value is limited by the size of the FFT grid). If the time spent in fourwf is too large,
decrease npfft.

6.4 use_gemm_nonlop

This might improve substantially the computation of the nonlocal part of the Hamiltonian (nonlop).
Its usefulness increases with the number of bands treated by processor, ie nband/npband.

3

6.5 Memory

Some arrays are distributed on npfft processors only ; some are distributed on np_slk only. If
you run out of memory, increasing one of these variables might solve the problem.

References
[LT14] Antoine Levitt and Marc Torrent. Parallel eigensolvers in plane-wave density functional

theory. arXiv preprint arXiv:1406.4350, 2014.

[ZSTC06] Yunkai Zhou, Yousef Saad, Murilo L Tiago, and James R Chelikowsky. Self-consistent-
field calculations using chebyshev-filtered subspace iteration. Journal of Computational
Physics, 219(1):172–184, 2006.

4

	When to use and not to use Chebfi
	How to use Chebfi
	Convergence
	Chebfi vs LOBPCG
	Performance
	Environment
	Measures

	Tuning and trade-offs
	nline
	np_slk
	npfft vs npband
	use_gemm_nonlop
	Memory

