CECAM Tutorial: "Dynamical, dielectric and magnetic properties of solids with ABINIT" Lyon, 12-16 may 2014

Symmetries of phonons

Gian-Marco Rignanese

European Theoretical Spectroscopy Facility

Institute of Condensed Matter and Nanosciences, B-1348 Louvain-la-Neuve, Belgique

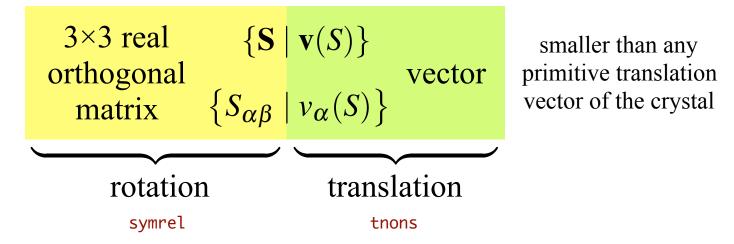
Introduction

• The phonon frequencies and eigenvectors are the solution of the following **generalized eigenvalue problem**:

- The aim of this lecture is to show how it is possible to determine the symmetries of the phonon modes U_{mq}(κα) at a wave vector **q** using group theory.
- For pedagogic purposes, we focus on practical aspects without giving the formal justifications of the formulas presented here, which may be found in the litterature [1,2].

Symmetries

• In the following, we adopt the **Seitz notation** for the symmetry operations of the crystal:



• Applied to the equilibrium position vector of atom κ relative to the origin of the cell τ_{κ} , this symmetry transforms it as: $\{\mathbf{S} \mid \mathbf{v}(S)\} \tau_{\kappa} = \mathbf{S}\tau_{\kappa} + \mathbf{v}(S) = \tau_{\kappa'} + \mathbf{R}^{a}$

$$\{S_{\alpha\beta} \mid v_{\alpha}(S)\} \tau_{\kappa\alpha} = S_{\alpha\beta} \tau_{\kappa\alpha} + v_{\alpha}(S) = \tau_{\kappa'\alpha} + R^{a}_{\alpha}$$

where **R**^{*a*} is a translation vector of the crystal.

Example 1: c-ZrO₂

• with WPASSIGN on the Bilbao Crystrallographic Server [3]:

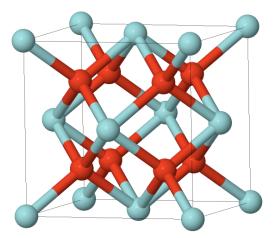
Bilbao Crystallographic Server -> Assignment of Wyckoff Positions

Assignment of Wyckoff Positions

Atoms Data:

AT.	WP	SS	Representative	Atomic orbit
Zr1	4a (0,0,0)	m-3m	(0.00000,0.00000,0.00000)	(0.000000,0.000000,0.000000) (0.000000,0.500000,0.500000) (0.500000,0.000000,0.500000) (0.500000,0.500000,0.000000)
02	8c (1/4,1/4,1/4)	-43m	(0.250000,0.250000,0.250000)	(0.250000,0.250000,0.250000) (0.750000,0.750000,0.250000) (0.750000,0.250000,0.750000) (0.250000,0.750000,0.750000) (0.250000,0.250000,0.750000) (0.750000,0.750000,0.250000) (0.750000,0.250000,0.250000)

 $\begin{array}{l} Fm-3m\\ a=5.010\mbox{\AA}\\ b=5.010\mbox{\AA}\\ c=5.010\mbox{\AA}\\ \alpha=90.0^{\circ}\\ \beta=90.0^{\circ}\\ \gamma=90.0^{\circ} \end{array}$



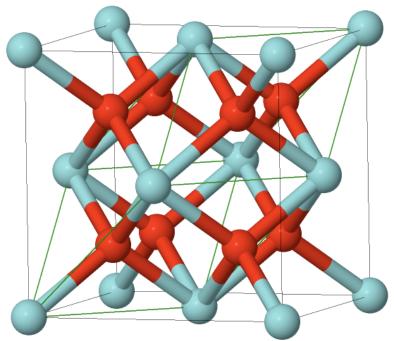
Example 1: c-ZrO₂

2.50000000E-01

• with ABINIT:

natom rprim

- 3 0.000000000E+00 5.00000000E-01 5.00000000E-01 5.00000000E-01 0.00000000E+00 5.000000000E-01 5.000000000E-01 5.00000000E-01 0.00000000E+00 1 2 2
- typat xred
- 0.00000000E+00 0.00000000E+00 0.0000000E+00
 - 2.50000000E-01 2.50000000E-01
- -2.500000000E-01 -2.500000000E-01 -2.500000000E-01



Example 1: c-ZrO₂



Example 2: Si

• with WPASSIGN on the Bilbao Crystrallographic Server [3]:

Bilbao Crystallographic Server → Assignment of Wyckoff Positions

Assignment of Wyckoff Positions

Atoms Data:

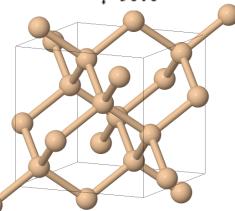
AT.	WP	SS	Representative	Atomic orbit
Si1	8a (1/8,1/8,1/8)	-43m	(0.125000,0.125000,0.125000)	(0.125000,0.125000,0.125000) (0.625000,0.125000,0.625000) (0.125000,0.625000,0.625000) (0.625000,0.625000,0.125000) (0.875000,0.375000,0.375000) (0.875000,0.875000,0.875000) (0.375000,0.875000,0.375000) (0.375000,0.875000,0.375000)

• with ABINIT

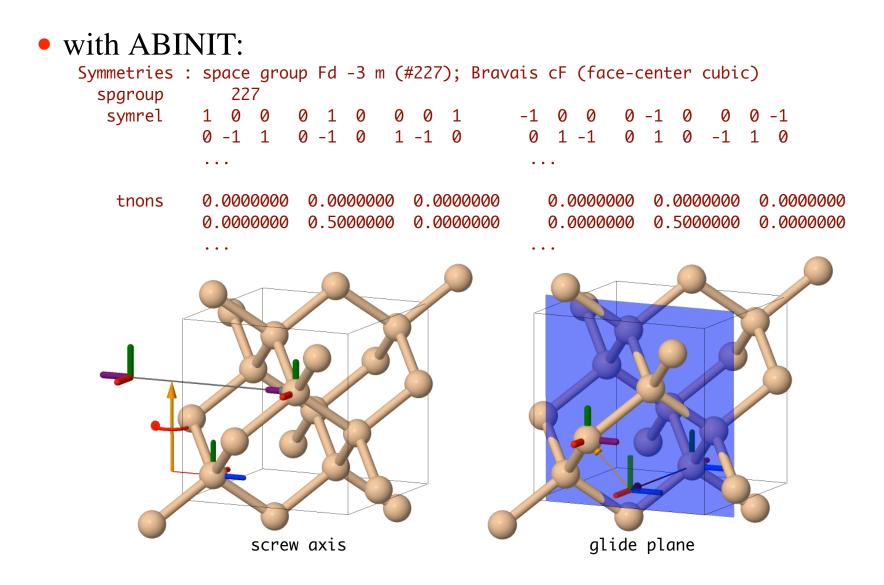
natom	2		
rprim	0.000000000E+00	5.000000000E-01	5.000000000E-01
	5.000000000E-01	0.000000000E+00	5.000000000E-01
	5.000000000E-01	5.000000000E-01	0.000000000E+00
typat	1 1		
xred	1.2500000000E-01	1.250000000E-01	1.250000000E-01
	8.750000000E-01	8.750000000E-01	8.750000000E-01

CECAM Tutorial, Lyon, 12-16 may 2014

F d 3 m a=5.431Å b=5.431Å c=5.431Å α =90.0° β =90.0° γ =90.0°



Example 2: Si



Group of the wave vector q

The first step is to determine G_q the group consisting of the symmetry operations of the crystal {S | v(S)} whose purely rotational part {S} have the property:

 $\mathbf{S}\mathbf{q} = \mathbf{q} + \mathbf{G}$

where G is a translational vector of the reciprocal lattice.

<u>rem 1:</u> **G** vanishes if **q** lies inside the first Brillouin zone. <u>rem 2:</u> **G** can only be non-zero if **q** is on the border of the zone. <u>rem 3:</u> if $q=\Gamma$, the group of the wave vector is simply the point group of the crystal.

Character table of G_q

- The next step is to obtain the character table for the group G_q.
 The various tables for all space groups and special points can be found in books (e.g. [4]).
- Alternatively, the Bilbao Crystallographic Server [3] provides all the tables for the Γ point.

Exemple 1: Si at the L point

representation	basis	$\{E 0\}$	$2\{C_3 0\}$	$3\{C_{2'} 0\}$	$\{i 0\}$	$2\{iC_3 0\}$	$3\{iC_{2'} 0\}$
L_1	1; xy + yz + xz	1	1	1	1	1	1
L_2	$yz(y^2 - z^2) + xy(x^2 - y^2) + xz(z^2 - x^2)$	1	1	-1	1	1	-1
L_3	$2x^2 - y^2 - z^2, y^2 - z^2$	2	-1	0	2	-1	0
L'_1	$x(y^2 - z^2) + y(z^2 - x^2) + z(x^2 - y^2)$	1	1	1	-1	-1	-1
L'_2	x + y + z	1	1	-1	-1	-1	1
L'_3	y-z, 2x-y-z	2	-1	0	-2	1	0

Example 2: c-ZrO₂ and Si at the Γ **point**

• with POINT on the Bilbao Crystrallographic Server [3]:

O _h (m-3m)	#	Ε	4	2	3	2'	Ι	-4	m	-3	m'	functions
Mult.	-	1	6	3	8	6	1	6	3	8	6	•
A _{1g}	Γ ₁ +	1	1	1	1	1	1	1	1	1	1	x ² +y ² +z ²
A _{1u}	Γ ₁ -	1	1	1	1	1	-1	-1	-1	-1	-1	•
A _{2g}	Γ ₂ +	1	-1	1	1	-1	1	-1	1	1	-1	•
A _{2u}	Γ ₂ -	1	-1	1	1	-1	-1	1	-1	-1	1	•
Eg	Г ₃ +	2	0	2	-1	0	2	0	2	-1	0	(2z ² -x ² -y ² ,x ² -y ²)
Eu	Г ₃ -	2	0	2	-1	0	-2	0	-2	1	0	•
T _{2u}	Γ ₅ -	3	-1	-1	0	1	-3	1	1	0	-1	•
T _{2g}	Γ ₅ +	3	-1	-1	0	1	3	-1	-1	0	1	(xy,xz,yz)
T _{1u}	Γ ₄ -	3	1	-1	0	-1	-3	-1	1	0	1	(x,y,z)
T _{1g}	Γ ₄ +	3	1	-1	0	-1	3	1	-1	0	-1	(J_x,J_y,J_z)

- The symmetries of phonons are related to the transformation properties of the displacement vectors $U_{mq}(\kappa\alpha)$.
- In group theoretical terms, this implies to take direct product of the irreducible representations for the vector (x, y, z) with those of the various atomic sites: $\chi_V \otimes \chi_{atomic sites}$
- <u>Step 1:</u> find χ_V

Exemple 1: Si at the L point

representation	basis	$\{E 0\}$	$2\{C_3 0\}$	$3\{C_{2'} 0\}$	$\{i 0\}$	$2\{iC_3 0\}$	$3\{iC_{2'} 0\}$				
L_1	1; xy + yz + xz	1	1	1	1	1	1				
L_2	$yz(y^2 - z^2) + xy(x^2 - y^2) + xz(z^2 - x^2)$	1	1	-1	1	1	-1				
L_3	$2x^2 - y^2 - z^2, y^2 - z^2$	2	-1	0	2	-1	0				
L'_1	$x(y^{2}-z^{2}) + y(z^{2}-x^{2}) + z(x^{2}-y^{2})$	1	1	1	-1	-1	-1				
L'_2	x + y + z	1	1	-1	-1	-1	1				
L'_3	y-z, 2x-y-z	2	-1	0	-2	1	0				
$\chi_V = L_2' \oplus L_3'$											

Example 2: c-ZrO₂ and Si at the Γ **point**

O _h (m-3m)	#	Е	4	2	3	2'	Ι	-4	m	-3	m'	functions
Mult.	-	1	6	3	8	6	1	6	3	8	6	•
A _{1g}	Γ ₁ +	1	1	1	1	1	1	1	1	1	1	x ² +y ² +z ²
A _{1u}	Γ ₁ -	1	1	1	1	1	-1	-1	-1	-1	-1	•
A _{2g}	Γ ₂ +	1	-1	1	1	-1	1	-1	1	1	-1	•
A _{2u}	Γ ₂ -	1	-1	1	1	-1	-1	1	-1	-1	1	•
Eg	Γ ₃ +	2	0	2	-1	0	2	0	2	-1	0	$(2z^2-x^2-y^2,x^2-y^2)$
Eu	Г ₃ -	2	0	2	-1	0	-2	0	-2	1	0	•
T _{2u}	Γ ₅ -	3	-1	-1	0	1	-3	1	1	0	-1	•
T _{2g}	Γ ₅ +	3	-1	-1	0	1	3	-1	-1	0	1	(xy,xz,yz)
T _{1u}	Γ ₄ -	3	1	-1	0	-1	-3	-1	1	0	1	(x,y,z)
T _{1g}	Γ ₄ +	3	1	-1	0	-1	3	1	-1	0	-1	(J _x ,J _y ,J _z)

 $\chi_V = T_{1u}$

- <u>Step 2:</u> find $\chi_{atomic sites}$
 - * Each atomic site is also characterized by one or more symmetry operations that map the atomic site onto itself. The collection of these symmetry operations define the site group (usually labeled using Wyckoff notation). The site group can be one of the 32 crystallographic point groups and must be a subgroup of the space group.
 - * For each site, the characters $\chi_{atomic \ sites}$ represent the number of atoms that are invariant under the symmetry operations of the group.

Example: c-ZrO₂

• with ABINIT (log file):

symspgr : the symmetry operation no. 1 is the identity symspar : the symmetry operation no. 2 is an inversion symaxes : the symmetry operation no. 3 is a 2-axis symplanes : the symmetry operation no. 4 is a mirror plane symaxes : the symmetry operation no. 5 is a 2-axis symplanes : the symmetry operation no. 6 is a mirror plane symaxes : the symmetry operation no. 7 is a 2-axis symplanes : the symmetry operation no. 8 is a mirror plane

•••

symplanes : the symmetry operation no. 41 is a mirror plane symaxes : the symmetry operation no. 42 is a 2-axis symplanes : the symmetry operation no. 43 is a mirror plane symaxes : the symmetry operation no. 44 is a 2-axis symspgr : the symmetry operation no. 45 is a -4 axis symaxes : the symmetry operation no. 46 is a 4-axis symspgr : the symmetry operation no. 47 is a -4 axis symaxes : the symmetry operation no. 48 is a 4-axis

Example: c-ZrO₂

• with ABINIT (log file):

symatm:	atom number	1 is reached starting at atom	
1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
symatm:	atom number	2 is reached starting at atom	
23	2 3 2 3 2	3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	23
23	2 3 2 3 2	3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	2 3
symatm:	atom number	3 is reached starting at atom	
32	3 2 3 2 3	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	32
32	3 2 3 2 3	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	32

$$\chi_{atom \ site \ 4a} = A_{1g}$$

$$\chi_{atom \ site \ 8c} = A_{1g} \oplus A_{2u}$$

O _h (m-3m)	#	Е	4	2	3	2'	Ι	-4	m	-3	m'	functions
Mult.	-	1	6	3	8	6	1	6	3	8	6	•
A _{1g}	Γ ₁ +	1	1	1	1	1	1	1	1	1	1	x ² +y ² +z ²
A _{2u}	Γ ₂ -	1	-1	1	1	-1	-1	1	-1	-1	1	

• <u>Step 3:</u> compute $\chi_V \otimes \chi_{atomic \ sites}$ $\chi_V \otimes \chi_{atom \ site \ 4a} = T_{1u} \otimes A_{1g} = T_{1u}$ $\chi_V \otimes \chi_{atom \ site \ 8c} = T_{1u} \otimes (A_{1g} \oplus A_{2u}) = T_{1u} \oplus T_{2g}$

$\Gamma = T_{2g} \oplus T_{1u} \oplus T_1$	U
--	---

Multiplication Table

						ivi u	inplication rable			
O _h (m-3m)	A _{1g}	A _{1u}	A _{2g}	A _{2u}	Eu	Eg	T _{2u}	T _{2g}	T _{1u}	T _{1g}
A _{1g}	A _{1g}	A _{1u}	A _{2g}	A _{2u}	Eu	Eg	T _{2u}	T _{2g}	T _{1u}	T _{1g}
A _{1u}	•	A _{1g}	A _{2u}	A _{2g}	Eg	Eu	T _{2g}	T _{2u}	T _{1g}	T _{1u}
A _{2g}	•	•	A _{1g}	A _{1u}	Eu	Eg	T _{1u}	T _{1g}	T _{2u}	T _{2g}
A _{2u}	•	•	•	A _{1g}	Eg	Eu	T _{1g}	T _{1u}	T _{2g}	T _{2u}
Eu	•	•	•	•	$A_{1g}+A_{2g}+E_{g}$	A _{1u} +A _{2u} +E _u	T _{2g} +T _{1g}	T _{2u} +T _{1u}	T _{2g} +T _{1g}	T _{2u} +T _{1u}
Eg	•	•	•	•	•	$A_{1g}+A_{2g}+E_{g}$	T _{2u} +T _{1u}	T _{2g} +T _{1g}	T _{2u} +T _{1u}	T _{2g} +T _{1g}
T _{2u}	•	•	•	•	•	•	$A_{1g}+E_{g}+T_{2g}+T_{1g}$	$A_{1u}+E_u+T_{2u}+T_{1u}$	$A_{2g}+E_{g}+T_{2g}+T_{1g}$	$A_{2u} + E_u + T_{2u} + T_{1u}$
T _{2g}	•	•	•	•	•	•	•	$A_{1g}+E_{g}+T_{2g}+T_{1g}$	$A_{2u}+E_{u}+T_{2u}+T_{1u}$	$A_{2g}+E_{g}+T_{2g}+T_{1g}$
T _{1u}	•	•	•	•	•	•	•	•	$A_{1g}+E_{g}+T_{2g}+T_{1g}$	$A_{1u}+E_u+T_{2u}+T_{1u}$
T _{1g}	•	•	•	•	•	•	•		•	$A_{1g}\text{+}E_{g}\text{+}T_{2g}\text{+}T_{1g}$

[Note: the table is symmetric]

• <u>Step 3:</u> compute $\chi_V \otimes \chi_{atomic \ sites}$ $\chi_V \otimes \chi_{atom \ site \ 4a} = T_{1u} \otimes A_{1g} = T_{1u}$ $\chi_V \otimes \chi_{atom \ site \ 8c} = T_{1u} \otimes (A_{1g} \oplus A_{2u}) = T_{1u} \oplus T_{2g}$ $\Gamma = T_{2g} \oplus T_{1u} \oplus T_{1u}$

Mechanical Representation

١	WP	A _{1g}	A _{1u}	A _{2g}	A _{2u}	Eu	E_g	T _{2u}	T _{2g}	T _{1u}	T _{1g}	Modes
	8c	•	•	•	•	•	•	•	1	1	•	Show
	4a	•	•	•	•	•	•	•	•	1	•	Show

• <u>Step 3:</u> compute $\chi_V \otimes \chi_{atomic \ sites}$ $\chi_V \otimes \chi_{atom \ site \ 4a} = T_{1u} \otimes A_{1g} = T_{1u}$ $\chi_V \otimes \chi_{atom \ site \ 8c} = T_{1u} \otimes (A_{1g} \oplus A_{2u}) = T_{1u} \oplus T_{2g}$ $\Gamma = T_{2g} \oplus T_{1u} \oplus T_{1u}$ **IR Active Modes** WP $A_{1g} A_{1u} A_{2g} A_{2u} E_u E_g T_{2u} T_{2g} T_{1u}$ T_{1g} 8c 1 4a 1 Raman Active Modes

WP	A _{1g}	A _{1u}	A _{2g}	A _{2u}	Eu	E_g	T _{2u}	T _{2g}	T _{1u}	T _{1g}
8c	•	•	•	•	•	•	•	1	•	•
4a	•	•	•	•	•	•	•	•	•	•

- <u>Step 4:</u> assign each phonon mode *m* individually
 - ★ find its characters $\chi_{mq}(\{\mathbf{S} \mid \mathbf{v}(S)\})$ with respect to the various symmetry operations of G_q :

$$\chi_{m\mathbf{q}}(\{\mathbf{S} \mid \mathbf{v}(S)\}) = \sum_{\kappa\kappa'} \sum_{\alpha\beta} U_{m\mathbf{q}}(\kappa\alpha) S_{\alpha\beta} e^{i\mathbf{q}\cdot[\tau_{\kappa} - \mathbf{S}\tau_{\kappa}]} \times \delta(\kappa, F_0(\kappa'; R)) U_{m\mathbf{q}}(\kappa'\beta)$$

where $F_0(\kappa'; S)$ is the label of the atom to which the atom κ' is brought by the symmetry operation {**S** | **v**(*S*)};

the δ expresses that we only need to take into account those atoms κ' that map on to atom κ by the symmetry operation

 \star compare the character to the table

Example: c-ZrO₂

• with ANADDB (output file):

Analysis of degeneracies and characters (maximum tolerance=0.000001 a.u.) Symmetry characters of vibration mode # 1 degenerate with vibration modes # 2 to 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.0 1.0 -1.0 -1.0 1.0 -1.0 1.0 Symmetry characters of vibration mode # 4 degenerate with vibration modes # 5 to 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 -1.0 1.0 -1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Symmetry characters of vibration mode # 7 degenerate with vibration modes # 8 to 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0

• assignments:

modes	Ε	4 2	3	2'	Ι	-4	m	-3	m		
1-3	3	1 -1	0	-1	-3	-1	1	0	1	→	F1u
4-6	3	1 -1	0	-1	-3	-1	1	0	1	→	F1u
7-9	3	-1 -1	0	1	3	-1	-1	0	1	→	F2g

Bibliography

- A.A. Maradudin and S.H. Vosko, *Symmetry properties of the normal vibrations of a crystal*, Rev. Mod. Phys. 40, 1-37 (1968).
- M.S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to the Physics of Condensed Matter (Springer-Verlag, Berlin, 2008).
- 3. Bilbao Crystallographic Server: http://www.cryst.ehu.es
- 4. S.C. Miller and W.S. Love, Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups (Pruett Press, Boulder, CO, 1967).