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• The phonon frequencies and eigenvectors are the solution of the 
following generalized eigenvalue problem: 
 
 
 

• The aim of this lecture is to show how it is possible to determine 
the symmetries of the phonon modes Umq(κα) at a wave vector q 
using group theory. 
• For pedagogic purposes, we focus on practical aspects without 

giving the formal justifications of the formulas presented here, 
which may be found in the litterature [1,2].

Introduction
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• In the following, we adopt the Seitz notation for the symmetry 
operations of the crystal: 
 
 
 
 

• Applied to the equilibrium position vector of atom κ relative to 
the origin of the cell τκ, this symmetry transforms it as: 
 
 
where Ra is a translation vector of the crystal.

Symmetries
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• with WPASSIGN on the Bilbao Crystrallographic Server [3]:

Example 1: c-ZrO2
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• with ABINIT:

Example 1: c-ZrO2
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     natom         3
     rprim    0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
              5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
              5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
     typat    1  2  2
      xred    0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
              2.5000000000E-01  2.5000000000E-01  2.5000000000E-01
             -2.5000000000E-01 -2.5000000000E-01 -2.5000000000E-01
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• with ABINIT (output file):

Example 1: c-ZrO2
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 Symmetries : space group Fm -3 m (#225); Bravais cF (face-center cubic)
   spgroup       225
    symrel    1  0  0   0  1  0   0  0  1      -1  0  0   0 -1  0   0  0 -1
              0 -1  1   0 -1  0   1 -1  0       0  1 -1   0  1  0  -1  1  0

              ...                               ...

              0  0 -1   1  0 -1   0  1 -1       0  0  1  -1  0  1   0 -1  1
             -1  1  0  -1  0  1  -1  0  0       1 -1  0   1  0 -1   1  0  0

inversion mirror plane
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• with WPASSIGN on the Bilbao Crystrallographic Server [3]:  
 
 
 
 
 
 
 
 

• with ABINIT 

Example 2: Si
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     natom         2
     rprim    0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
              5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
              5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
     typat    1  1
      xred    1.2500000000E-01  1.2500000000E-01  1.2500000000E-01
              8.7500000000E-01  8.7500000000E-01  8.7500000000E-01
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• with ABINIT:

Example 2: Si
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 Symmetries : space group Fd -3 m (#227); Bravais cF (face-center cubic)
   spgroup       227
    symrel    1  0  0   0  1  0   0  0  1      -1  0  0   0 -1  0   0  0 -1
              0 -1  1   0 -1  0   1 -1  0       0  1 -1   0  1  0  -1  1  0
              ...                               ...

     tnons    0.0000000  0.0000000  0.0000000     0.0000000  0.0000000  0.0000000
              0.0000000  0.5000000  0.0000000     0.0000000  0.5000000  0.0000000
              ...                               ...

screw axis glide plane
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• The first step is to determine Gq the group consisting of the  
symmetry operations of the crystal {S ∣ v(S)} whose purely 
rotational part {S} have the property: 
 
where G is a translational vector of the reciprocal lattice. 
 
rem 1: G vanishes if q lies inside the first Brillouin zone. 
rem 2: G can only be non-zero if q is on the border of the zone. 
rem 3: if q=Γ, the group of the wave vector is simply the point  
group of the crystal.

Group of the wave vector q
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• The next step is to obtain the character table for the group Gq. 
The various tables for all space groups and special points can be 
found in books (e.g. [4]). 
• Alternatively, the Bilbao Crystallographic Server [3] provides all 

the tables for the Γ point.  

Exemple 1: Si at the L point

Character table of Gq
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Table C.17. Character table for group Oh appropriately modified to describe the group of the wave vector for k = 0 (the Γ -point)
for the diamond structure (#227)

representation {E|0} 3{C2
4 |0} 6{C4|τd} 6{C2′ |τd} 8{C3|0} {i|τd} 3{iC2

4 |τd} 6{iC4|0} 6{iC2′ |0} 8{iC3|τd}

Γ1 1 1 1 1 1 1 1 1 1 1

Γ2 1 1 −1 −1 1 1 1 −1 −1 1

Γ12 2 2 0 0 −1 2 2 0 0 −1

Γ15 3 −1 1 −1 0 −3 1 −1 1 0

Γ25 3 −1 −1 1 0 −3 1 1 −1 0

Γ ′
1 1 1 1 1 1 −1 −1 −1 −1 −1

Γ ′
2 1 1 −1 −1 1 −1 −1 1 1 −1

Γ ′
12 2 2 0 0 −1 −2 −2 0 0 1

Γ ′
15 3 −1 1 −1 0 3 −1 1 −1 0

Γ ′
25 3 −1 −1 1 0 3 −1 −1 1 0

τd = (a/4)(1, 1, 1). The classes involving τd translations are classes in the Oh point group that are not in the Td point group

Table C.18. Character table for group D3d of the wave vector for point L for the diamond structure (#227)

representation basis {E|0} 2{C3|0} 3{C2′ |0} {i|0} 2{iC3|0} 3{iC2′ |0}

L1 1; xy + yz + xz 1 1 1 1 1 1

L2 yz(y2 − z2) + xy(x2 − y2) + xz(z2 − x2) 1 1 −1 1 1 −1

L3 2x2 − y2 − z2, y2 − z2 2 −1 0 2 −1 0

L′
1 x(y2 − z2) + y(z2 − x2) + z(x2 − y2) 1 1 1 −1 −1 −1

L′
2 x + y + z 1 1 −1 −1 −1 1

L′
3 y − z, 2x − y − z 2 −1 0 −2 1 0

For the L point (π/a)(1, 1, 1), the group of the wave vector has no symmetry operations involving the translation vector
τd = (a/4)(1, 1, 1)
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• with POINT on the Bilbao Crystrallographic Server [3]:

Example 2: c-ZrO2 and Si at the Γ point
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• The symmetries of phonons are related to the transformation 
properties of the displacement vectors Umq(κα). 
• In group theoretical terms, this implies to take direct product of 

the irreducible representations for the vector (x, y, z) with those 
of the various atomic sites: χV ⨂ χatomic sites 
• Step 1: find χV 

Exemple 1: Si at the L point

Irreducible representation
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Table C.17. Character table for group Oh appropriately modified to describe the group of the wave vector for k = 0 (the Γ -point)
for the diamond structure (#227)

representation {E|0} 3{C2
4 |0} 6{C4|τd} 6{C2′ |τd} 8{C3|0} {i|τd} 3{iC2

4 |τd} 6{iC4|0} 6{iC2′ |0} 8{iC3|τd}

Γ1 1 1 1 1 1 1 1 1 1 1

Γ2 1 1 −1 −1 1 1 1 −1 −1 1

Γ12 2 2 0 0 −1 2 2 0 0 −1

Γ15 3 −1 1 −1 0 −3 1 −1 1 0

Γ25 3 −1 −1 1 0 −3 1 1 −1 0

Γ ′
1 1 1 1 1 1 −1 −1 −1 −1 −1

Γ ′
2 1 1 −1 −1 1 −1 −1 1 1 −1

Γ ′
12 2 2 0 0 −1 −2 −2 0 0 1

Γ ′
15 3 −1 1 −1 0 3 −1 1 −1 0

Γ ′
25 3 −1 −1 1 0 3 −1 −1 1 0

τd = (a/4)(1, 1, 1). The classes involving τd translations are classes in the Oh point group that are not in the Td point group

Table C.18. Character table for group D3d of the wave vector for point L for the diamond structure (#227)

representation basis {E|0} 2{C3|0} 3{C2′ |0} {i|0} 2{iC3|0} 3{iC2′ |0}

L1 1; xy + yz + xz 1 1 1 1 1 1

L2 yz(y2 − z2) + xy(x2 − y2) + xz(z2 − x2) 1 1 −1 1 1 −1

L3 2x2 − y2 − z2, y2 − z2 2 −1 0 2 −1 0

L′
1 x(y2 − z2) + y(z2 − x2) + z(x2 − y2) 1 1 1 −1 −1 −1

L′
2 x + y + z 1 1 −1 −1 −1 1

L′
3 y − z, 2x − y − z 2 −1 0 −2 1 0

For the L point (π/a)(1, 1, 1), the group of the wave vector has no symmetry operations involving the translation vector
τd = (a/4)(1, 1, 1)

cV = L0
2 �L0

3
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cV = T1u

Example 2: c-ZrO2 and Si at the Γ point
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• Step 2: find χatomic sites 

★ Each atomic site is also characterized by one or more 
symmetry operations that map the atomic site onto itself. The 
collection of these symmetry operations define the site group 
(usually labeled using Wyckoff notation). The site group can 
be one of the 32 crystallographic point groups and must be a 
subgroup of the space group. 

★ For each site, the characters χatomic sites  represent the number of 
atoms that are invariant under the symmetry operations of the 
group.

Irreducible representation

 14



CECAM Tutorial, Lyon, 12-16 may 2014

• with ABINIT (log file):

Example: c-ZrO2
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 symspgr : the symmetry operation no.   1 is the identity
 symspgr : the symmetry operation no.   2 is an inversion
 symaxes : the symmetry operation no.   3 is a 2-axis
 symplanes : the symmetry operation no.   4 is a mirror plane
 symaxes : the symmetry operation no.   5 is a 2-axis
 symplanes : the symmetry operation no.   6 is a mirror plane
 symaxes : the symmetry operation no.   7 is a 2-axis
 symplanes : the symmetry operation no.   8 is a mirror plane

 ...

 symplanes : the symmetry operation no.  41 is a mirror plane
 symaxes : the symmetry operation no.  42 is a 2-axis
 symplanes : the symmetry operation no.  43 is a mirror plane
 symaxes : the symmetry operation no.  44 is a 2-axis
 symspgr : the symmetry operation no.  45 is a -4 axis
 symaxes : the symmetry operation no.  46 is a 4-axis
 symspgr : the symmetry operation no.  47 is a -4 axis
 symaxes : the symmetry operation no.  48 is a 4-axis
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• with ABINIT (log file):

Example: c-ZrO2
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 symatm: atom number    1 is reached starting at atom
   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 symatm: atom number    2 is reached starting at atom
   2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3
   2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3
 symatm: atom number    3 is reached starting at atom
   3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2
   3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2  3  2

catom site 4a = A1g

catom site 8c = A1g �A2u
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• Step 3: compute χV ⨂ χatomic sites

Irreducible representation

 17

cV ⌦catom site 4a = T1u ⌦A1g = T1u

cV ⌦catom site 8c = T1u ⌦ (A1g �A2u) = T1u �T2g

G = T2g �T1u �T1u
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• Step 3: compute χV ⨂ χatomic sites

Irreducible representation

 18

cV ⌦catom site 4a = T1u ⌦A1g = T1u

cV ⌦catom site 8c = T1u ⌦ (A1g �A2u) = T1u �T2g

G = T2g �T1u �T1u
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• Step 3: compute χV ⨂ χatomic sites

Irreducible representation
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cV ⌦catom site 4a = T1u ⌦A1g = T1u

cV ⌦catom site 8c = T1u ⌦ (A1g �A2u) = T1u �T2g

G = T2g �T1u �T1u
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• Step 4: assign each phonon mode m individually 

★ find its characters χmq({S ∣ v(S)}) with respect to the various 
symmetry operations of Gq: 

★ where F0(κ′;S) is the label of the atom to which the atom κ′ is 
brought by the symmetry operation {S ∣ v(S)}; 
the δ expresses that we only need to take into account those 
atoms κ′ that map on to atom κ by the symmetry operation 

★ compare the character to the table 

Irreducible representation
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Example: c-ZrO2

• with ANADDB (output file): 

• assignments: 

 21

 Analysis of degeneracies and characters (maximum tolerance=0.000001 a.u.)
 Symmetry characters of vibration mode #   1
       degenerate with vibration modes #   2 to    3
  3.0 -3.0 -1.0  1.0 -1.0  1.0 -1.0  1.0  1.0 -1.0 -1.0  1.0  1.0 -1.0 -1.0  1.0
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1.0 -1.0 -1.0  1.0 -1.0  1.0  1.0 -1.0
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1.0 -1.0  1.0 -1.0 -1.0  1.0 -1.0  1.0
 Symmetry characters of vibration mode #   4
       degenerate with vibration modes #   5 to    6
  3.0 -3.0 -1.0  1.0 -1.0  1.0 -1.0  1.0  1.0 -1.0 -1.0  1.0  1.0 -1.0 -1.0  1.0
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1.0 -1.0 -1.0  1.0 -1.0  1.0  1.0 -1.0
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1.0 -1.0  1.0 -1.0 -1.0  1.0 -1.0  1.0
 Symmetry characters of vibration mode #   7
       degenerate with vibration modes #   8 to    9
  3.0  3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0  1.0  1.0 -1.0 -1.0  1.0  1.0 -1.0 -1.0
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1.0  1.0 -1.0 -1.0 -1.0 -1.0  1.0  1.0
  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0 -1.0 -1.0 -1.0 -1.0

 modes   E  4  2  3  2’ I -4  m -3  m       
  1-3    3  1 -1  0 -1 -3 -1  1  0  1 ! F1u
  4-6    3  1 -1  0 -1 -3 -1  1  0  1 ! F1u
  7-9    3 -1 -1  0  1  3 -1 -1  0  1 ! F2g
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