The tetrahedron method and angular momentum projection

Overview

- General introduction: DOS and other uses
- Formalism
- Implementation
- Subroutines
- Examples
- Conclusions

Tetrahedron I

- Interpolate band structure linearly
- Calculate general integrals analytically and more precisely (Energy, DOS, others)
- A2-D example

Tetrahedron II

- Several different versions
- Lehmann and Taut, phys stat sol (b) 54, 469
- Improved tetrahedron method
(Blochl et. al. PRB 49, 16223)
- Other inter- or extra-polation methods are more risky
- Main issue: band crossings.

Tetrahedron III

- Distinguish between real crossings, anticrossings and "close" bands
- The resulting DOS is
 very different
- No simple solution: either discontinuous bands or spurious crossings

- You still need a brute force convergence wrt kpts

Tetrahedron IV

- By integrating the linearized function, the integral over the full BZ is transformed into a sum.
- The contribution of each summit of the tetrahedron is separated, and the sum is reduced to one over inequivalent kpts.

FIG. 5. Breakup of a submesh cell into six tetrahedra.

Tetrahedron V

- Special care must be taken if:
- The tetrahedron is degenerate (e $1=e 4$)
- Replace contrib by a gaussian
- NB: you need at least 2 kpts!
- Or only partially (e1, e2=e4)
- The slope of the BS on either side can be different, and the DOS will jump.
- Integrated DOS is analytical too

Angular momenta I

- Angular momenta $Y_{\mathrm{lm}}(\theta, \varphi)$ are a complete basis (angular variables)
- Atomic-like orbitals: project full Ψ close to nucleus to determine character
- Not real point group character, but usually good enough to distinguish bands
- Density in sphere:

$$
\begin{gathered}
n\left(r_{\max }\right)=\sum_{G \neq 0} \frac{1}{|G|^{\beta}} e^{i 2 \pi \vec{G} \vec{R}_{r}} n_{k}(\vec{G}) \operatorname{Int} 0\left(\left|\overrightarrow{G_{\max }}\right| r_{\max }\right)+n_{k}(\vec{G}=0) \frac{4 \pi r_{\max }^{3}}{3} \\
\operatorname{Int} 0(Y)=\int_{0}^{Y} 4 \pi y^{2} j_{0}(y) d y
\end{gathered}
$$

Angular momenta II

- Angular momentum decomposition:

$$
\begin{gathered}
\Psi_{l m}(\Delta r)=4 \pi i l \sum_{G} c_{k}(\vec{G}) e^{i 2 \pi(\vec{k}+\vec{G}) \vec{R}_{r}} j_{l}(2 \pi|\vec{k}+\vec{G} \| \Delta r|) Y_{l}^{m *}\left(\Omega_{\vec{k}+\vec{G}}\right) \\
c_{l m}\left(r_{\max }\right)=\frac{1}{\Omega_{0}} \int_{0}^{r_{\max }} \Psi_{l m}^{*}(\Delta r) \Psi_{l m}(\Delta r)(\Delta r)^{2} d r
\end{gathered}
$$

- Repeat for each band and kpoint
- Sum over all 1 and m should give full density
- Multiplicative factor for each irred kpt in tetrahedron method
- 1 atom at a time: only do inequivalent ones (iatsph, natsph)

Implementation

An Example I

Si FCC DOS 6x6x6x4
shifted grid

An Example II

Si FCC DOS 6x6x6x4
non shifted grid

An Example III

The lessson

- The tetrahedron method is sensitive to the presence of degenerate points on the kpt grid. Use a non-shifted grid containing a maximal number of special points
- Method is not yet parallelized for angular momentum projection
- The value of the projected DOS is proportional to the integrated density in the sphere! Not directly comparable.

Conclusions

- Tetrahedron method and projections work decently well for production
- To be parallelized
- Only calculate dens_in_sphere for irred atoms (memory can explode)
- Extend to other types of partial DOS: spatial criteria, $1^{\text {st }}$ layer of a slab...

