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These notes were originally written to explain the background, establish the nota-
tion, and provide an explanation of certain features added to the ANADDB [1] package
in an upgrade implemented by Xifan Wu in January 2004, providing for improved
flexibility in the computation of dielectric, elastic, piezoelectric, and related tensors.
However, I believe they may prove helpful more generally, e.g., as a starting point for
the definition and computation of higher-order derivatives, or of properties computed
under conditions of finite electric fields.

These notes will normally reside in the file ‘vanderbilt-anaddb-notes.pdf’ in the
‘/Infos’ subdirectory of the ABINIT distribution [1]. Regarding the definitions of
elastic tensors, especially under conditions of finite pressure or stress, please also
consult the notes ‘elasticity-oganov.pdf’ [2] written by A. Oganov and located in the
same subdirectory.

I would like to thank X. Wu, D.R. Hamann, and K.M. Rabe for input and helpful
comments.

1 Introduction

The purpose of these notes is to provide a systematic framework for the discussion
of response tensors that can be defined in terms of three kinds of homogeneous per-
turbations in crystalline insulators:

• Zone-center phonons

• Homogeneous electric fields

• Homogeneous strains

In particular, the notes provide a set of definitions of many of the elastic, dielectric,
piezoelectric, and other tensors that can be defined in terms of the system response
to these perturbations, and clarifies the connections between them. In addition,
the notes make a direct connection with the quantities (i.e., the matrices of second
derivatives) that are calculated and stored in the “derivative database” (DDB) of the
ABINIT computer package, and with the analysis of these carried out by the ANADDB

package of ABINIT [1].
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2 Units

SI units are used throughout. This is the convention of most textbooks and review
articles such as Lines and Glass [3], Nye [4], Ballato [5], etc. However, Waghmare’s
article [6], and much of the usual electronic structure literature, uses Gaussian units.
We recall here that in SI units, potential = (1/4πε0) q1q2/r, energy density = (ε0/2)E2,
and D = ε0 E + P .

3 Notation

Consider an insulating crystal with N atoms per primitive cell. We choose a reference
state in which the lattice vectors are a1, a2, and a3 and the atomic coordinates are

R
(0)
m . Here m is a composite label (atom and displacement direction) running over

1, ..., 3N .

um = displacements of atoms from positions R
(0)
m (m = 1, ..., 3N)

ηj = strain in Voigt notation (j = 1, ..., 6)

Eα = electric field (α = x, y, z) (1)

Cartesian coordinates are used throughout, with the exception of some ABINIT in-
ternal representations discussed in Sec. 4. I will try to consistently use m, n, ... for
the 3N atomic displacement labels (e.g., forces will be Fm); j, k, ... for Voigt labels
(e.g., stresses will be σj); and α, β, ... for Cartesian labels (e.g., polarizations will be
Pα). Also note that the Voigt notation is a bit tricky for shear strains and stresses,
e.g., σ6 = σxy but η6 = 2ηxy, etc. This is explained more carefully in Sec. 6 (see also
Nye, Ref. [4]).

Throughout these notes, we are only going to be interested in atomic displace-
ments that preserve the primitive unit cell. In the phonon language, this means we
are considering only phonon modes with q-vectors at the Brillouin zone (BZ) center.

Also, we will restrict ourselves entirely to zero temperature. Thus, entropy will
never enter, and the distinction between thermodynamic functions written in terms
of temperature vs. in terms of entropy will never arise.

The cell volume in the reference configuration (i.e., at zero strain) is by definition
Ω0 = a1 · a2 × a3, so that the cell volume at strain ηj is Ω = Ω0 det[η] (interpreted
as the determinant of the Cartesian ηαβ corresponding to Voigt ηj).

Energies E (and other related thermodynamic energy functions) will be under-
stood to be defined as the energy per unit undeformed volume. That is, the energy
E is really an energy density, with units of J/m3, defined as the energy per primitive
cell of the strained crystal divided by the volume of the unstrained crystal. This is a
tricky point that is often swept under the rug in many textbooks, leaving confusion.
You can find an explicit discussion in Landau and Lifshitz, Theory of Elasticity (3rd
Edition), p. 8: “The following remark...” (Many texts will say that E is the energy
per unit volume, but then this turns out to be inconsistent with what they do later.
Think about a crystal at its equilibrium volume, where the stress should be zero.
The meaning of equilibrium is really that the energy per unit cell (let’s call it Ēc) is
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stationary. But since the volume is not stationary with respect to strains, defining σ
as the derivative of the quantity energy per unit volume is incorrect.) In summary,
H, H0, etc. will have units of J/m3, as though it were an energy per unit volume,
but it is really an energy per undeformed unit volume.

We may sometimes use a collective notation

xa = ( um , ηj , Eα )

where a runs over the (3N + 6 + 3) coordinates describing the complete set of dis-
placements, the strain, and the electric field. Then, for example, we may write an
expansion

H = H0 +Aa xa + 1
2Bab xa xb (2)

(implied sum notation) which is short-hand for

H = H0 + Am um +Aj ηj +Aα Eα
+ 1

2Bmn um un + 1
2Bjk ηj ηk + 1

2Bαβ Eα Eβ
+ Bmj um ηj +Bmα um Eα +Bjα ηj Eα . (3)

In this expansion, the first-order coefficients have the meaning

Am = −Fm/Ω0, Fm = force (N)

Aj = +σj , σj = stress (J/m3)

Aα = −Pα, Pα = polarization (C/m2) . (4)

The second-order coefficients are the three diagonal-block tensors

Bmn = Kmn/Ω0, Kmn = force-constant matrix

Bjk = Cjk, Cjk = elastic-constant matrix

Bαβ = −χαβ, χαβ = dielectric susceptibility matrix (5)

and the three off-diagonal-block tensors

Bmj = −Λmj/Ω0, Λmj = “internal-strain tensor”

Bmα = −Zmα/Ω0, Zmα = Born dynamical charge tensor

Bjα = −ejα, ejα = piezoelectric tensor . (6)

In other words, the “big gradient vector” and “big Hessian matrix” are

A =

−F/Ω0

σ
−P

 B =

 K/Ω0 −Λ/Ω0 −Z/Ω0

−ΛT /Ω0 C −e
−ZT /Ω0 −eT −χ

 .

The quantity F above is the force computed at um = ηj = Eα = 0, but the
variation of the force with these variables is given by

Fm(um, ηj , Eα) = −Ω0 (Am +Bmnun +Bmjηj +BmαEα) . (7)
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Defining ∆Fm to be the change in the force from the reference crystal, and doing a
similar analysis for ∆σj and ∆Pα, we find

∆Fm = −Kmn un + Λmj ηj + Zmα Eα
∆σj = −Ω−10 Λmj um + Cjk ηk − ejα Eα
∆Pα = −Ω−10 Zmα um + ejα ηj + χαβ Eβ . (8)

The following points should be kept in mind regarding the definitions of the
various quantities above:

• All the second-derivative tensors K, C, χ, Λ, Z and e are “bare” quantities cal-
culated at fixed u, η, and E . The formulation of the “relaxed-ion” or “dressed”
quantities will be discussed later.

• The terminology regarding the “internal-strain tensor” does not seem to be well
established in the literature. Our Λmj is the tensor that expresses the first-
order change in the force on an atom resulting from a first-order strain; for this
reason, we will sometimes refer to it as the “force-response internal-strain ten-
sor” when confusion might otherwise arise. Similarly, there is a “displacement-
response internal-strain tensor” Γmj expressing the first-order change of the
relaxed atomic displacements resulting from a first-order strain; this will be
discussed in Sec. 5.2.

• Regarding the piezoelectric coefficient, our definition is really the transpose of
the one most commonly found in the literature; that is, what we call ‘e51’ is
more commonly referred to as ‘e15’ in the literature.

• All quantities defined here and calculated by ABINIT use the Voigt notation for
stress- or strain-linked indices. However, all such quantities appearing above
– that is, C, Λ, e, and σ – have the property that no factors of 2 are needed
to relate them to true tensor quantities. That is, σ4 = σyz, C14 = Cxx,yz,
C44 = Cyz,yz, etc. This is explained further in Sec. 6, where it becomes evident
that any object that can be defined as a (first, second, or higher) derivative of
H with respect to strain is free of such conversion factors.

4 Connection to ABINIT

4.1 Introduction

ABINIT stores the following information in the DDB database:

• Geometry of reference structure: {R(0)
m }, a1, a2, a3.

• Masses Mm and bare ionic charges Z ion
m .

• Hessian tensors entering B: K, C, χ, Λ, Z, and e.

• Gradients F and σ are not included. See discussion below.
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• The polarization P is currently not included, but we may wish to think about
revising ABINIT so that it is included in the future.

Regarding F and σ, the philosophy is that the structural degrees of freedom,
including strain, should have been relaxed already in the main run. Thus, any re-
maining forces and strains are assumed to be “computational noise” associated with
numerical roundoff and non-zero tolerances. So, the job of ANADDB should be to
compute the properties as though all the forces and stresses are zero.

Other information is stored in the DDB as well. The header part of the file in-
cludes various information to help identify the run that produced it, and some other
information, such as force-constant matrix elements at non-zero q and certain third
derivatives, is also included in the main part. For the present purposes, we will ignore
this other information.

4.2 Detailed description of ABINIT inputs

In this section, we attempt to specify precisely how the second-derivative information
is stored in the DDB file. This information corresponds to partial second derivatives of
the energy with respect to displacements, electric fields, and strains, and thus there
is a direct correspondence with the information in the tensors K, C, χ, Λ, Z and
e. However, the conventions for these quantities in the DDB file differ from those in
the present notes by factors associated with units conversions, reduced vs. Cartesian
coordinates, cell volume factors, etc.

4.2.1 Lattice vectors and cell volume

The real space lattice vectors are aµ and henceforth µ, ν, ... will be used to la-
bel the three lattice directions. The reciprocal-space lattice vectors are defined via
Gµ · aν = 2π δµν , but we introduce instead the “reduced” reciprocal-space lattice
vectors G′µ = Gµ/2π, so that

G′µ · aν = δµν (9)

Recall that Ω0 = a1 · a2 × a3. We will use the subscript “c” to denote an energy per
unit cell. Thus,

Hc = Ω0H (10)

4.2.2 Reduced displacements and forces

In Sec. 3, the displacements were defined in Cartesian coordinates as um, m = 1, 3N .
Recall that m is a composite index, m→ τα, where τ = 1, N is a label for the atom
in the unit cell and α is a Cartesian axis label.

The ABINIT code internally uses “reduced” coordinates (also sometimes called
“lattice-vector” or “canonical” or “internal” coordinates) for displacements, defined
via sτµ = G′µ · uτ and uτ = sτµaµ or, using index notation,

sτµ = G′µα uτα (11)
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and

uτα = sτµ aµα (12)

Application of the chain rule shows that derivatives behave like

∂

∂sτµ
= aµα

∂

∂uτα
. (13)

Thus, if Fτα = −∂Hc/∂uτα is the force vector in Cartesian coordinates, then the
“force vector in reduced coordinates” is

fτµ = − ∂Hc

∂sτµ
= aµα Fτα (14)

where f has dimensions of energy.

4.2.3 Reduced electric fields and polarizations

Let

εµ = |qe| E · aµ , (15)

be the electric field in reduced coordinates, where |qe| is the proton charge. Thus, εµ,
having dimensions of energy, is the work done on a charge quantum |qe| to translate
it by a lattice vector aµ. Similarly, we can introduced the “reduced polarization”

pµ = |qe|−1 Ω0 G′µ ·P . (16)

Note that pµ (dimensionless) is defined modulo 1 (that is, the “quantum of polariza-
tion” is just unity for each component pµ), and that the electronic contribution to it
is just

pelecµ = −(2π)−1
∑
n

φn,µ (17)

where φn,µ is the Berry phase of band n (defined modulo 2π) as in Ref. [17]. The en-
ergy per primitive cell arising from the E-field is converted from Cartesian to internal
coordinates as

Ω0 E ·P = εµ pµ (18)

where both sides have dimensions of energy.

4.2.4 Definitions of perturbations in ABINIT

ABINIT computes and stores the derivatives of the wavefunctions with respect to
reduced displacements, reduced electric fields, and Cartesian strains, and its energy
units are Hartree (atomic units). The wavefunctions are expanded as ψnk(r) =∑
l cnk,l exp[i(Gl + k) · r] (where l represents a triplet of integers) and the cnk,l are

dimensionless, so what is stored is
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• For displacements: dcnk/dsµ (dimensionless)

• For E-fields: dcnk,l/dεµ (inverse energy)

• For strains: dcnk,l/dηj (Cartesian Voigt; dimensionless)

Similarly, forces are initially computed in reduced form as fτµ = − dHc/dsτµ, while
stresses are computed as σj = Ω−10 dHc/dηj .

4.2.5 Second derivative information in the DDB

Similarly, the quantities that are stored in the second-derivative DDB are as follows.

• Displacement–and–Displacement: The quantity that is computed and stored in
the DDB is

d2Hc

dsτµ dsτ ′ν
(19)

in terms of which the force-constant matrix is

Kτα,τ ′β = G′µαG
′
νβ

d2Hc

dsτµ dsτ ′ν
. (20)

• Strain–and–Strain: The quantity that is computed and stored in the DDB is

d2Hc

dηj dηk
(21)

in terms of which the elastic-constant tensor is

Cjk = Ω−10

d2Hc

dηj dηk
(22)

(recall that Hc = Ω0H).

• Field–and–Field: The quantity that is computed and stored in the DDB is

d2Hc

dεµ dεν
(23)

having dimensions of inverse Hartree, in terms of which the susceptibility is

χαβ = − q2e Ω−10 aµα aνβ
d2Hc

dεµ dεν
(24)

and εαβ = δαβ + 4π χαβ.
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• Displacement–and–Strain: The quantity that is computed and stored in the
DDB is

d2Hc

dsτµ dηj
(25)

in terms of which the force-response internal-strain tensor is

Λτα,j = −G′µα
d2Hc

dsτµ dηj
. (26)

• Displacement–and–Field: The quantity that is computed and stored in the DDB

is the purely electronic contribution

d2Hc

dsτµ dεν
(27)

to the dynamical charge tensor. The ionic contribution must be added to it.
Thus, the full Born dynamical charge tensor is

Zτα,β = − |qe|G′µα aνβ
d2Hc

dsτµ dεν
+ Z ion

τ δαβ (28)

which has dimensions of charge.

• Strain–and–Field: The quantity that is computed and stored in the DDB is

d2Hc

dηj dεν
(29)

in terms of which the piezoelectric tensor is

ejα = − |qe|Ω−10 aνα
d2Hc

dηj dεν
(30)

Note that dHc/dεν has the interpretation of being a reduced polarization pelecν in
the sense of Eqs. (17-18). Thus, the quantity in Eq. (29) has the interpretation
of dpelecν /dηj , i.e., a derivative of the reduced polarization with respect to strain.
This corresponds [17] to the “proper” and not the “improper” piezoelectric
tensor. Thus, it is (a reduced version of) the “proper” piezoelectric tensor that
is stored in the DDB.

Note that a finite-difference calculation of derivatives of unreduced polarization
P with respect to strain would yield the “improper” piezoelectric tensor. On
the other hand, the quantity in Eq. (29) corresponds (up to factors of −2π, see
Eq. (17)) to numerical derivatives of the Berry phases with respect to strain
components. As explained in Ref. [17], when converted via an equation like
Eq. (30), these yield the “proper” piezoelectric tensor.

Thankfully, the ionic contribution to the “proper” piezoelectric tensor is iden-
tically zero [17], so we don’t have to include it in the DDB.
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4.3 Electric field

Extensions to ABINIT to allow non-zero electric fields are in progress, based on the
approach of Souza, Íñiguez and Vanderbilt [16]. For the time being, however, we will
assume that the reference calculation is always at E = 0, i.e., in vanishing electric
field.

4.4 Symmetry reduction

Often it may be possible to block the vectors Aa and the tensors Bab into irreducible
representations (“irreps”) according to the crystal symmetry. In this case, it may be
possible to focus on just one irrep and calculate all the derived quantities just for that
irrep. However, at least for now, the philosophy of the ANADDB implementation is
to compute the full tensors, and to handle any symmetry reduction by hand at the
stage of analyzing the results.

5 Computation of derived quantities

We are in the process of implementing, in the ANADDB module of ABINIT, a package
that will be capable of computing and reporting a large number of derived quantities
based on the input of information from the DDB. In this section, we list some of these
quantities and give the formulas necessary for computing them.

The starting point will be the bare quantities K, C, χ, Λ, Z and e. It will be
assumed that the information needed to construct these tensors has been read from
the DDB file, and any needed conversions (units, reduced vs. Cartesian, cell volume
factors, etc.) have already been applied as described in Sec. 4.2.

5.1 Elastic compliance tensor

The clamped-ion elastic compliance tensor S is simply obtained by inverting the
elastic-tensor matrix C:

Sjk = (C−1)jk. (31)

Warning messages are issued if the matrix Cjk is found to be nearly singular.

5.2 Internal-strain tensors

As noted at the end of Sec. 3, Λmj is the “force-response internal-strain tensor” giving
the force on atom m due to strain j. If instead one wants the “displacement-response
internal-strain tensor,” which gives displacement of atom m due to strain j, it is given
by the product

Γmj = (K−1)mn Λnj . (32)
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5.3 Relaxed-ion quantities

5.3.1 Formulation

The tensors C, χ, and e are “clamped-ion” quantities defined at fixed u. We define
the corresponding “relaxed-ion” or “dressed” response tensors C̃, χ̃, and ẽ as follows.
Let

H̃(ηj , Eα) = min
{um}

H(um, ηj , Eα) . (33)

Referring back to Eq. (3) and setting ∂H/∂un = 0, and assuming that the reference
configuration is one in which the forces vanish, we find

0 = Bnm um +Bnj ηj +Bnα Eα

from which it follows that

um = −(B−1)mn [Bnj ηj +Bnα Eα]

or

H̃(ηj , Eα) = 1
2B̃jk ηj ηk + 1

2B̃αβ Eα Eβ + B̃jα ηj Eα (34)

where

B̃jk = Bjk −Bmj (B−1)mnBnk

B̃αβ = Bαβ −Bmα (B−1)mnBnβ

B̃jα = Bjα −Bmj (B−1)mnBnα . (35)

Using the definitions given in Eqs. (5) and (6), and making use of the fact that B,
and thus B̃, are real symmetric matrices, these become

C̃jk = Cjk − Ω−10 Λmj (K−1)mn Λnk (36)

χ̃αβ = χαβ + Ω−10 Zmα (K−1)mn Znβ (37)

ẽjα = ejα + Ω−10 Λmj (K−1)mn Znα (38)

Note that C̃ and ẽ are the “physical” elastic constant and piezoelectric tensors,
respectively, since it is virtually impossible to measure these quantities without allow-
ing the atomic coordinates to respond. The first and second terms on the right-hand
sides of the above equations are usually referred to as the “clamped-ion” (or “purely
electronic”) and “relaxed-ion” (or “lattice”) contributions, respectively.

5.3.2 Pseudo-inverse of the force-constant matrix

The force-constant matrix K should have three vanishing eigenvalues as a result
of translational symmetry. Moreover, in soft-mode systems, other eigenvalues may
be close to zero. Thus, for the many operations that use K−1, there is a danger of
numerical instabilities arising from attempting to invert a singular, or nearly singular,
matrix. For this reason, we have implemented a careful procedure for obtaining the
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“pseudo-inverse” of K; throughout these notes, whenever we refer to K−1, we really
mean the pseudo-inverse.

Briefly, we begin by identifying the three-dimensional space of acoustic modes (i.e.,
uniform translations), and project the matrix K onto the complementary subspace
of dimension 3N − 3. We then invert in this subspace, reporting a warning message
if any eigenvalues are very small, and then transform back to the full space. Thus,
by construction, the resulting pseudo-inverse is zero in the subspace of translational
modes, and is the inverse of the original matrix in the complementary subspace.

As a result, any time K−1 is multiplied by another tensor, a pre-projection onto
the complementary subspace of dimension 3N − 3 is effectively carried out. In other
words, “the acoustic sum rule is effectively enforced” in any operation involving K−1.

5.3.3 Dielectric tensor

The dielectric response can be measured in three frequency regimes:

• At frequencies much greater than any phonon frequency (but less than electronic
frequencies). In this case only the electrons respond and

ε
(∞)
αβ = δαβ + 4πχαβ . (39)

• At frequencies low compared to any phonon frequency, but above mechanical
resonance frequencies,

ε
(0)
αβ = δαβ + 4πχ̃αβ . (40)

• At frequencies low compared to mechanical resonance frequencies of the macro-
scopic sample, the strain can also relax,

ε
(σ)
αβ = δαβ + 4πχ̃

(σ)
αβ (41)

as discussed below and in Sec. 5.6.

Note that the ANADDB module of ABINIT has been capable of computing ε(0) for
some time. Actually, it is capable of computing εαβ(ω) in the regime of lattice
frequencies, and in particular, if this is evaluated for ω = 0, ε(0) results. However, the

revised version of the ANADDB is being written to compute ε(0) and ε
(σ)
αβ independently,

using the pseudo-inverse of Sec. 5.3.2.
The derivation for the free-stress susceptibility ε(σ) starts from the free-stress

energy functional

H̃(σ)(Eα) = min
{ηj}

H̃(ηj , Eα) (42)

Following a line of reasoning similar to what was done for the elimination of displace-
ment degrees of freedom in Sec. 5.3.1, we obtain

χ̃
(σ)
αβ = χ̃αβ + ẽjα (C̃−1)jk ẽkβ (43)

in terms of which the free-stress dielectric tensor ε
(σ)
αβ is given as in Eq. (41). Note

that Eq. (43) is equivalent to Eq. (59) appearing later in Sec. 5.6.
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5.4 Change of notation

For the remainder of Sec. 5, all quantities will be assumed to be relaxed-ion quantities.
Up to now such quantities have been denoted by a tilde (e.g., χ̃), but henceforth the
tildes will be dropped.

5.5 Elastic tensors

From Eq. (8), the elastic tensor C is defined as the partial derivative of σj with respect
to ηk at fixed macroscopic electric field E ; to emphasize this, we will optionally write
a superscript (E):

C
(E)
jk =

∂σj
∂ηk

∣∣∣
E
. (44)

For some purposes, we may be interested instead in the elastic constant tensor at
fixed displacement field D:

C
(D)
jk =

∂σj
∂ηk

∣∣∣
D
. (45)

The inverse of the elastic constant tensor is the compliance tensor. It can be defined
either at fixed E or D:

S
(E)
jk =

∂ηj
∂σk

∣∣∣
E
, (46)

S
(D)
jk =

∂ηj
∂σk

∣∣∣
D
. (47)

The definitions of C and S are shown schematically on the left-hand side of Fig. 1.
The meaning of the arrow pointing from η to σ and labeled by C is that

δσj = Cjk δηk

(either at fixed E or fixed D), and similarly the downgoing arrow labeled S indicates
that

δηj = Sjk δσk .

The elastic tensors and compliances are related as inverses,

S(E) = (C(E))−1 (48)

S(D) = (C(D))−1 . (49)

The relation between C(D) and C(E), and between S(D) and S(E), will be given at the
end of Sec. 5.6.

Note that the compliance matrices are defined above in Voigt notation, and in
this case there are factors of 2 and 4 needed to make connection with true tensor
quantities: S14 = 2Sxx,yz, S44 = 4Syz,yz, etc. This is explained more fully in Sec. 6.

Finally, note that various different definitions can be given of the elastic constants
under conditions of nonzero hydrostatic pressure or, more generally, under nonzero
stress. In this case, the experimentally relevant tensors (e.g., for seismic waves in the
interior of the earth) do not necessarily correspond to the ones computed directly by
ABINIT. For a discussion of these issues, please see [2].
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Figure 1: Definitions of response functions.

5.6 Piezoelectric tensors

The piezoelectric tensors are defined schematically by the lines crossing horizontally
and diagonally in Fig. (1). (All piezoelectric tensors are the “proper” ones – see the
last part of Sec. 4.2.5 and Ref. [17] for a discussion.) The interpretation of the arrows
is

δηj = djα δEα
δDα = djα δσj

δσj = − ejα δEα
δDα = ejα δηj . (50)

The first of the four equations above is sometimes said to describe the “converse”
piezoelectric effect, while the second one describes the “direct” piezoelectric effect,
and the third and/or the fourth describe the “inverse” piezoelectric effect. Thus,
one sometimes refers to d as the coefficient of the “direct piezoelectric effect” while e
(denoted as c almost as often as e – these notations are equivalent) is the coefficient
of the “inverse piezoelectric effect.” Restating, the piezoelectric coefficients may be
defined via

ejα =
∂Dα

∂ηj

∣∣∣
E

=
∂Pα
∂ηj

∣∣∣
E

or ejα = − ∂σj
∂Eα

∣∣∣
η

(51)

and

djα =
∂ηj
∂Eα

∣∣∣
σ

or djα =
∂Dα

∂σj

∣∣∣
E

=
∂Pα
∂σj

∣∣∣
E
. (52)

The equivalence between the two expressions for e, and similarly between the two
expressions for d, comes from thermodynamic relations as discussed in the Appendix
of Ballato [5] and in Nye [4].

The e and d tensors are related by

ejα = C
(E)
jk dkα or, equivalently, djα = S

(E)
jk ekα . (53)
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One also sometimes defines tensors g and h via

δηj = gjα δDα

δEα = − gjα δσj
δσj = −hjα δDα

δEα = −hjα δηj . (54)

(I am not aware of any standard names for these piezoelectric tensors.) They are
related to e and d via

gjα = β
(σ)
αβ djβ (55)

hjα = β
(η)
αβ ejβ . (56)

The Voigt notation introduces no factors of 2 for shear components of e or h, but
there are such factors for d and g: d51 = 2dxz,x, etc. (see Sec. 6). Also, note that it
is more common to find the indices reversed in the literature; e.g., this piezoelectric
component is more usually referred to as ‘d15’.

The relations between the elastic tensors defined at fixed E and fixed D in Sec. 5.5
are

C
(D)
jk = C

(E)
jk + hjα ekα (57)

S
(D)
jk = S

(E)
jk − gjα dkα (58)

and between the dielectric tensors defined at fixed η and fixed σ in Sec. 5.3.3 are

ε
(σ)
αβ = ε

(η)
αβ + ejα djβ (59)

β
(σ)
αβ = β

(η)
αβ − gjα hjβ . (60)

Note that Eq. (59) is equivalent to Eq. (43).

6 Voigt notation

6.1 Basic formulation

There are two systems that are commonly in use to index quantities that depend
on strains or stresses: the “true tensor notation” in which all Cartesian indices are
written explicitly, and the “Voigt notation” in which a reduced index is used: xx→ 1,
yy → 2, zz → 3, yz → 4, xz → 5, xy → 6. The stress elements are defined simply by
making this index replacement:

σ1 = σxx σ4 = σyz

σ2 = σyy σ5 = σxz (61)

σ3 = σzz σ6 = σxy
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However, the strain elements have factors of two inserted in the definition of the shear
elements:

η1 = ηxx η4 = 2ηyz

η2 = ηyy η5 = 2ηxz (62)

η3 = ηzz η6 = 2ηxy

The context here is that η is a symmetric tensor, i.e., ηxy = ηyx, defined via
ηαβ = 1

2(uα,β + uβ,α). Here uα,β = ∂uα/∂xβ is the unsymmetrized tensor defined in
term of spatial derivatives ∂/∂xβ of the medium displacement uα. Thus, we could
alternatively have written η6 = ηxy + ηyx, etc.

The reason for the introduction of these factors of 2 is explained very nicely in
the book by Nye, Ref. [4] (see, e.g., Secs. VII.2-3 and VIII.2 therein). I give a brief
discussion based on the thermodynamic energy function H of Sec. 3. The change dH
of the energy should be the same in both frameworks. In the true tensor framework,
H is a a function of 9 variables, and we can write

dH = σxx dηxx + ...+ σyz dηyz + ...+ σzy dηzy + ... (63)

where each ‘...’ indicates two more terms obtained by cyclic permutation of (xyz).
On the other hand, in the Voigt framework, the same dH can be written as a sum of
only six terms as

dH = σ1 dη1 + ...+ σ4 dη4 + ... (64)

where each ‘...’ indicates two more terms obtained by cyclic permutation (123) or
(456). Comparing these two equations, which must be equal, and using that ηyz = ηzy,
it is clear that a factor of two must be inserted into the defining connection either
between σyz and σ4, or else between ηyz and η4. The Voigt notation arises from
making the second choice, i.e., Eqs. (61) and (62).

In practice, this means that if you want to introduce a Voigt strain η6 = t into an
ABINIT calculation (say in order to check, by finite differences, the computation of the
stress or elastic tensor), then one should set ηxy = ηyx = t/2 when constructing the
unit cell. For example, if the original cell vectors describe a simple cubic lattice, then
the new lattice vectors could be a′1 = a(1, t/2, 0), a′2 = a(t/2, 1, 0), and a′3 = a(0, 0, 1);
or they could be a′1 = a(1, t, 0), a′2 = a(0, 1, 0), and a′3 = a(0, 0, 1); etc. (In the first
case, ux,y = uy,x = t/2; in the second case, ux,y = 0 and uy,x = t; in both cases,
ηxy = t/2 and η6 = t.) Then, if H is expanded in powers of t, the coefficient of the
linear term is just σ6, the coefficient of the quadratic term is just C66, etc.

6.2 Systematics

We can understand when to insert, or not to insert, factors of 2 in the relations
between Voigt and Cartesian notations by following the following rules:

• Any inserted factor of two makes the Voigt object larger: Q...4... = 2Q...yz...
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• If there is a factor of η in the numerator of a derivative, do insert a factor of 2
for each shear component.

• If there is a factor of σ in the numerator of a derivative, no factors are needed.

• If there is a derivative with respect to η, no factors are needed.

• If there is a derivative with respect to σ, do insert a factor of 2 for each shear
component.

Thus, there is no need to insert factors of two when interpreting most of the objects
we have introduced, including σ, C, e, Λ, and Γ. However, we do need factors for S;
since Sij = dηi/dσj , we need S14 = 2Sxx,yz, S44 = 4Syz,yz, etc. As for the piezoelectric
tensors, it is clear from Eqs. (51-56) and the rules given above that factors of 2 are
needed for d and g, but not for e and h.

Finally, in the linear-response calculation, one needs to calculate and store objects
such the first-order derivatives of Bloch wavefunctions with respect to strains, i.e.,
d|unk〉/dηj . This is a derivative with respect to strain, so by the above rules, there
is no need to worry about a factor of two in the definition of this object.

6.3 A word about terminology

Nye (Ref. [4]) refers to the arrays of Voigt elements as “matrices” while the arrays of
Cartesian-labeled elements are called “tensors.” In his terminology, the term “tensor”
is reserved for objects that transform under rotations by the application of the asso-
ciated 3×3 rotation matrix to each Cartesian index. Thus, for example, the rotated
piezoelectric tensor is given by

e′βγ,α = RβµRγν Rατ eµν,τ (65)

where R is the rotation matrix and there are implicit sums over repeated indices.
Since the the 6× 3 matrix of ejα elements in the Voigt notation does not transform
in a similar way, Nye takes pains to call the Voigt ejα a “matrix” and not a “tensor.”

While Nye’s point is very well taken, the habit of referring to the Voigt elements
ejα as elements of the “piezoelectric tensor” is by now rather widely ingrained, and in
my opinion it is rather too pedantic to insist on the narrow definition. In these notes,
therefore, I generally use the term “tensor” to refer indiscriminately to either the
Voigt or the fully Cartesian notations. However, in deference to Nye, I do sometimes
use the extended phase “true tensor notation” to refer to the fully Cartesian notation.

7 Summary

As of January 2004, the calculation of the following quantities has been implemented
for the proposed update of ANADDB to version 4.3:

• All six “bare” tensors K, C, χ, Λ, Z and e, Sec. 3.
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• The clamped-ion compliance tensor S of Sec. 5.1.

• The displacement-response internal-strain tensor Γ of Sec. 5.2.

• The relaxed-ion elastic, dielectric, and piezoelectric tensors (C̃, χ̃, and ẽ) of
Sec. 5.3.1, and the relaxed-ion compliance tensor S(E) of Sec. 5.5.

It is our intention to include the ability to calculate additional tensors, including
many of the ones defined in Secs. 5.5 and 5.6, in a future release of the ANADDB

module of ABINIT.
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