
Contents

I. Users 3

1. Overview of the build system 5
1.1. Main objectives . 5
1.2. Underlying concepts . 5

2. The configure script 7
2.1. Running configure . 7
2.2. Environment variables . 8
2.3. The configuration process . 9
2.4. Options provided by Autoconf . 11
2.5. Compiler options . 13

2.5.1. Debugging . 13
2.5.2. Optimization . 14
2.5.3. Hints . 15
2.5.4. 64-bit architectures . 15
2.5.5. Overriding the build-system settings 15

2.6. MPI options . 16
2.7. External libraries . 17
2.8. Other options . 18

II. Developers 21

3. Preprocessing macros 23
3.1. Propagating information to the source code 23
3.2. Naming conventions . 23
3.3. If statements . 24
3.4. Preprocessing macros of ABINIT 5 . 24

3.4.1. Generic macros . 24
3.4.2. Architecture-related macros . 24
3.4.3. Optional library macros . 25
3.4.4. MPI macros . 25
3.4.5. Compiler macros . 26
3.4.6. Fortran-specific macros . 26

1

Contents

3.4.7. Renamed macros . 27
3.4.8. Unmaintained macros . 27
3.4.9. Removed macros . 27

4. Adding external libraries / plug-ins 29
4.1. Overall procedure . 29
4.2. The library makefile . 30
4.3. Fine-tuning abinit.amf . 31

III. Maintainers 33

5. Extending the build system 35
5.1. Prerequisites . 35
5.2. Adding scripts . 36
5.3. Adding M4 macros . 36
5.4. Editing configure.ac . 36

2

Part I.

Users

3

1. Overview of the build system

1.1. Main objectives

The build system of ABINIT is here to fulfill the following objectives:

• take care of the makefiles;

1.2. Underlying concepts

Build directory support
Config-file support

5

2. The configure script

2.1. Running configure

Autoconf is a tool producing a shell script that automatically configures software source
code to adapt to many kinds of environments. The configuration script produced
by Autoconf is independent of Autoconf when it is run, so that its users
do not need to install Autoconf. In other words: you do not need have Autoconf
installed to build ABINIT. Moreover this configuration script requires no manual user
intervention when run; it do not normally even need an argument specifying the system
type. Instead, it individually tests for the presence of each feature that the software
package it is tuned to might need. However it does not yet have paranormal powers,
and in particular has no access to what you have in mind. You still have to explicitely
interact with it for now, and the best way to do it is through the numerous options of
this configure script.

One highly-recommended step is to create a build directory and go there before run-
ning configure:

mkdir tmp-build && cd tmp-build

In the following, we will assume that you have done so.

If you run it without arguments, the configure script will do its best to detect the
components of your computer and development environment automatically. It is however
possible to tune its behavior through the use of two classes of parameters:

• command-line options, composed of triggers (enable/disable) and specifiers (with/without),
plus a few special options;

• environment variables, which influence the overall behaviour of the script.

A typical call looks like:

../configure [OPTION] ... [VAR=VALUE] ...

Here is what [OPTION] stands for:

7

2. The configure script

Type ... if you want to ...
--enable-FEATURE[=ARG] activate FEATURE [ARG=yes]
--disable-FEATURE do not activate FEATURE (same as

--enable-FEATURE=no)
--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]
--without-PACKAGE do not use PACKAGE (same as

--with-PACKAGE=no)

To assign environment variables (e.g., CPP, FC, . . .), you specify them as VAR=VALUE
couples on the command line. Please note that there must be no spaces around the ’=’
sign. Moreover, VALUE must be quoted when it contains spaces. If some assignements
are ignored by the configure script, just try the other way around:

VAR=VALUE/configure [OPTION] ...

In this chapter, the defaults for the options are specified in square brackets. No
brackets means that there is no default value.

2.2. Environment variables

In table 2.1, you will find short descriptions of the most useful variables recognized
by the configure script of ABINIT. Use these variables to override the choices made by
configure or to help it to find libraries and programs with nonstandard names/locations.
Please note that they always have precedence over command-line options.

There are 2 environment variables of critical importance to the build system, though
they cannot be managed by configure:

• PATH, which defines the order in which the compilers will be found, and the
number of hits;

• LD_LIBRARY_PATH, which will greatly help the build system find usable ex-
ternal libraries, in particular MPI.

Improper settings of these 2 variables may cause a great confusion to the configure script
in some cases, in particular when looking for MPI compilers and libraries. A typical issue
encountered is the following crash:
checking for gcc... /home/pouillon/hpc/openmpi-1.2.4-gcc4.1/bin/mpicc
checking for C compiler default output file name... a.out
checking whether the C compiler works... configure: error: cannot run C compiled programs.
If you meant to cross compile, use ‘--host’.
See ‘config.log’ for more details.

And a look at config.log shows:
...
configure:6613: checking whether the C compiler works
configure:6623: ./a.out ./a.out: error while loading shared libraries:
libmpi.so.0: cannot open shared object file: No such file or directory
configure:6626: $? = 127
configure:6635: error: cannot run C compiled programs.
...

8

2.3. The configuration process

Option Description
AR Archiver
ARFLAGS Archiver flags
CPP C preprocessor
CPPFLAGS C/C++ preprocessor flags, e.g. -I<include_dir> if you have head-

ers in a non-standard directory named <include_dir>
CC C compiler command
CFLAGS C compiler flags
CC_LDFLAGS C link flags to prepend to the command line
CC_LIBS Libraries to append when linking a C program
CXX C++ compiler command
CXXFLAGS C++ compiler flags
CXX_LDFLAGS C++ link flags to prepend to the command line
CXX_LIBS Libraries to append when linking a C++ program
FC Fortran compiler command
FCFLAGS Fortran compiler flags
FC_LDFLAGS Fortran link flags to prepend to the command line
FC_LIBS Libraries to append when linking a Fortran program

Table 2.1.: Influencial environment variables for the build system of ABINIT.

This kind of error results from a missing path in the LD_LIBRARY_PATH environ-
ment variable, and can be solved very easily, in the present case this way:
export LD_LIBRARY_PATH="/home/pouillon/hpc/openmpi-1.2.4-gcc4.1/lib:${LD_LIBRARY_PATH}"

in the case of a BASH shell, and by:
setenv LD_LIBRARY_PATH "/home/pouillon/hpc/openmpi-1.2.4-gcc4.1/lib:${LD_LIBRARY_PATH}"

for a C shell.

2.3. The configuration process

Configuring ABINIT is a delicate step-by-step process, because each component is inter-
acting permanently with most others. This is reflected in the output of configure, that
we describe in this section.

The process starts with an overall startup, where the basic parameters required by
Autoconf and Automake are set. During the second part of this step, the build system
of ABINIT reads the options from the command line and from a config file, making
sure that the environment variables will always have precedence over the command-line
options, which in turn override the options read from the config file. It then reports
about changes in the user interface of the build system, warning the user if they have
used an obsolete option.

9

2. The configure script

The next step is about ensuring the overall consistency of the options provided to
configure. The build system takes the necessary decisions so that the code may be built
safely. It then parses the options, and issues an error if the user has provided invalid
options. The error messages give all the information needed to fix the problems.

Then comes the MPI startup stage, which the first half of the configuration of MPI
support. This must happen \underline{before} any Autoconf compiler test, in order to
give the build system the possibility to consistently select the MPI compilers that have
been detected. This step is mandatory to avoid configuration issues later on, due to
mismatches between the sequential and parallel compilers.

The next step is to find the various utilities that the build system may need along the
rest of the configuration process. This runs usually very smoothly, since these tools are
found on most of the platforms ABINIT runs on.

The preprocessing step is where serious things really start. The C preprocessor is
searched for, which involves in turn the search for a working C compiler. At this point,
all compilers must already have been selected. This is also typically where configure
may crash if the MPI installation detected is broken or misconfigured (see "Environ-
ment variables" section within this chapter), because the C compiler will not be able to
produce executables. This is why MPI support is disabled by default, and we are open
to any suggestion.

The three next steps involve the search for suitable C, C++ and Fortran compilers,
the detection of their type, and the application of tricks to have them work properly on
the user’s platform. These are also stages where the configuration may fail, in particular
if no suitable Fortran compiler is found.

Then the build system configures the use of the archiver, to build the numerous li-
braries that are part of ABINIT.

The two next steps are about fine-tuning the compile flags so that the build will work
fine if the architecture is 64-bit (work still in progress), and to set the adequate level of
optimization according to the platform parameters identified so far.

Here comes the probably most critical step of the configuration: MPI support. If ev-
erything could be set during the MPI startup stage, no further test is performed, and the
parallel code is marked for building. If not, the build system will try to detect whether
the compilers are able to build MPI source code and set the MPI options accordingly.

Once all this is done, the build system can set the parameters for the linear algebra
and FFT libraries (work still in progress), before turning to the connectors (see Fig. 2.1).

One last configuration step is dedicated to the nightly build support, which is now

10

2.4. Options provided by Autoconf

DFT

LINALGTRIO

GPU

MPI

MATHFFT

TIMER

Figure 2.1.: Dependency diagram of the connectors.

working but still at an early stage of development.

The very last step is to output the configuration to the numerous makefiles, as well
as to a few other important files. At the end, a warning is issued if the Fortran compiler
in use is known to cause trouble.

2.4. Options provided by Autoconf

Every configure script generated by Autoconf provides a basic set of options, whatever
the package and the environment. They either give information on the tunable param-
eters of the package or influence globally the build process. In most cases you will only
need a few of them, if any.

Overall configuration:

11

2. The configure script

Option Description
-h, --help display all options and exit

--help=short display options specific to the ABINIT package
--help=recursive display the short help of all the included packages

-V, --version display version information and exit
-q, --quiet, --silent do not print ‘checking...’ messages

--cache-file=FILE cache test results in FILE [disabled]
-C, --config-cache alias for ‘--cache-file=config.cache’
-n, --no-create do not create output files

--srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:

Option Description
--prefix=PREFIX install architecture-independent files in PREFIX

[/opt]
--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX

[PREFIX]

By default, make install will install all the files in subdirectories of /opt/abinit/<version>.
You can specify an installation prefix other than /opt using --prefix, for instance
--prefix=$HOME.

For a finer-grained control, use the options below.

Fine tuning of the installation directories:

Option Description
--bindir=DIR user executables [EPREFIX/bin]
--sbindir=DIR system admin executables [EPREFIX/sbin]
--libexecdir=DIR program executables [EPREFIX/libexec]
--datadir=DIR read-only architecture-independent data [PREFIX/share]
--sysconfdir=DIR read-only single-machine data [PREFIX/etc]
--sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com]
--localstatedir=DIR modifiable single-machine data [PREFIX/var]
--libdir=DIR object code libraries [EPREFIX/lib]
--includedir=DIR C header files [PREFIX/include]
--oldincludedir=DIR C header files for non-gcc [/usr/include]
--infodir=DIR info documentation [PREFIX/info]
--mandir=DIR man documentation [PREFIX/man]

Program names:

12

2.5. Compiler options

Option Description
--program-prefix=PREFIX prepend PREFIX to installed program

names
--program-suffix=SUFFIX append SUFFIX to installed program

names
--program-transform-name=PROGRAM run sed PROGRAM on installed pro-

gram names

System types:

Option Description
--build=BUILD configure for building on BUILD [guessed]
--host=HOST cross-compile to build programs to run on HOST [BUILD]
--target=TARGET configure for building compilers for TARGET [HOST]

Developer options:

Option Description
--enable-shared[=PKGS] build shared libraries [default=no]
--enable-dependency-tracking speeds up one-time build
--enable-dependency-tracking do not reject slow dependency extractors
--with-gnu-ld assume the C compiler uses GNU ld [default=no]

The following sections describe Abinit-specific options.

2.5. Compiler options

2.5.1. Debugging

The build system of Abinit provides a comprehensive database of debugging flags, cov-
ering all supported compiler vendors, compiler versions and architectures. They can be
accessed when using the profile debugging mode of the build system, which is enabled
when the --enable-debug option is neither set to “yes” nor “no”. The profile mode offers
4 different optimization levels, controlled by the value of the --enable-debug option:

• basic;

• enhanced ;

• paranoid ;

• naughty.

13

2. The configure script

The default level is basic, which corresponds to the setting of minimal compiler-dependent
debugging flags, typically “-g”. The enhanced level add checks for the most common bad
programming practices, while the paranoid level covers a much broader range of mis-
takes. The naughty level should be used by developers only, since it tries to make the
build fail. It is important to note that these debugging levels are strictly ordered and
cumulative. This means e.g. that setting --enable-debug=paranoid will also apply the
flags from the basic and enhanced levels.

When --enable-debug=yes, the build system expects debugging parameters from the
command line. Compile flags may be specified through the CFLAGS_DEBUG (C
programs), CXXFLAGS_DEBUG (C++ programs) and FCFLAGS_DEBUG (Fortran
programs) environment variables. Link flags may be provided through CC_LDFLAGS_DEBUG
(C programs), CXX_LDFLAGS_DEBUG (C++ programs) and FC_LDFLAGS_DEBUG
(Fortran programs). Linking additional libraries should be done through CC_LIBS_DEBUG
(C programs), CXX_LIBS_DEBUG (C++ programs) and FC_LIBS_DEBUG (For-
tran programs).

When --enable-debug=no, the debugging features of the build system are completely
silenced and the above environment variables are ignored.

2.5.2. Optimization

The build system of Abinit provides a comprehensive database of optimization flags,
covering all supported compiler vendors, compiler versions and architectures. They can
be accessed when using the profile optimization mode of the build system, which is
enabled when the --enable-optim option is neither set to “yes” nor “no”. The profile
mode offers 3 different optimization levels, controlled by the value of the --enable-optim
option:

• safe;

• standard ;

• aggressive.

These names are self-explanatory, and the default is of course standard, which corre-
sponds to the optimization database present in version 4 of Abinit, extended and up-
dated. The safe level may be quite convenient when the build fails at the standard level,
due to bugs in the compilers. It is obvious that the aggressive level should be used with
extreme care, and systematically accompanied by a run of the whole test suite before
any production calculation.

When --enable-optim=yes, the build system expects optimization parameters from the
command line. Compile flags may be specified through the CFLAGS_OPTIM (C pro-
grams), CXXFLAGS_OPTIM (C++ programs) and FCFLAGS_OPTIM (Fortran pro-
grams) environment variables. Link flags may be provided through CC_LDFLAGS_OPTIM

14

2.5. Compiler options

(C programs), CXX_LDFLAGS_OPTIM (C++ programs) and FC_LDFLAGS_OPTIM
(Fortran programs). Linking additional libraries should be done through CC_LIBS_OPTIM
(C programs), CXX_LIBS_OPTIM (C++ programs) and FC_LIBS_OPTIM (For-
tran programs).

When --enable-optim=no, the optimization features of the build system are completely
silenced and the above environment variables are ignored. Please note that debugging
has precedence over optimization, and that the latter is disabled for all debugging levels
above basic.

2.5.3. Hints

Abinit is a complex project, embedding the source code of other projects as well. In
order to be successful, the builds require hints in addition to the other flags. The build
system of Abinit thus provides a comprehensive database of optimization flags, covering
all supported compiler vendors, compiler versions and architectures. This is the purpose
of the --enable-hints option, which defaults to “yes”. It is extremely recommend to keep
it so.

However, there are cases where even the build system is not able to provide sufficient
information for a successful build. It can thus be complemented by extra information
from the command line. Compile flags may be specified through the CFLAGS_EXTRA
(C programs), CXXFLAGS_EXTRA (C++ programs) and FCFLAGS_EXTRA (For-
tran programs) environment variables. Link flags may be provided through CC_LDFLAGS_EXTRA
(C programs), CXX_LDFLAGS_EXTRA (C++ programs) and FC_LDFLAGS_EXTRA
(Fortran programs). Linking additional libraries should be done through CC_LIBS_EXTRA
(C programs), CXX_LIBS_EXTRA (C++ programs) and FC_LIBS_EXTRA (For-
tran programs).

2.5.4. 64-bit architectures

Most 64-bit architectures do not require specific flags for successful builds. However, in
some situations, in particular on hybrid 32/64-bit systems, it is necessary to add such
flags to select the proper binary object format. In these cases, you may want to use
the --enable-64bit-flags option, in particular if you encounter link-time and/or run-time
problems.

Please note that the support for 64-bit architectures is still incomplete and will be
reworked during the next development cycle of ABINIT.

2.5.5. Overriding the build-system settings

In some extremely rare configurations, the build system is not able to set properly the
build parameters. Should this happen, you can override all build-system settings by di-

15

2. The configure script

rectly providing the flags from the command line. Compile flags may be specified through
the CFLAGS (C programs), CXXFLAGS (C++ programs) and FCFLAGS (Fortran
programs) environment variables. Link flags may be provided through CC_LDFLAGS
(C programs), CXX_LDFLAGS (C++ programs) and FC_LDFLAGS (Fortran pro-
grams). Linking additional libraries should be done through CC_LIBS (C programs),
CXX_LIBS (C++ programs) and FC_LIBS (Fortran programs).

If you had to that, please report a bug to https://bugs.launchpad.net/abinit/+filebug,
providing as much information as you can on the architecture, including and the com-
piler, including how to get the version number of the compiler on the command line and
the output of this command. We will add support for your case as soon as we can.

2.6. MPI options

In addition to serial optimization, ABINIT provides parallel binaries relying upon the
MPI library. If you do not know what MPI stands for, then you really need the help of
a computer scientist before reading this section. First let us make clear that we cannot
provide you with any support to install MPI. If you need to do it, we advise you to ask
help to your system and/or network administrators, because it will likely require special
permissions and fair technical skills. In many cases you will already have a working
installation of MPI at your disposal, and will at most need some information about its
location.

Providing extended support for MPI is extremely delicate: there is no standard loca-
tion for the package, there are concurrent implementations following different philoso-
phies, and Fortran support is compiler-dependent. Moreover, there might be several
versions of MPI installed on your system, and you have to choose one of them carefully.
In particular, if you want to enable the build of parallel code in ABINIT — which you
will likely do — you have to build ABINIT with the same Fortran compiler that has
been used for MPI.

The MPI options provided by the build system are summarized in the following table.

Option Description
--enable-mpi Enable MPI support
--enable-mpi-io Enable parallel I/O [default=no]
--enable-mpi-trace Enable MPI time tracing [default=no]
--with-mpi-prefix=PATH Prefix for the MPI installation
--with-mpi-level=NUMBER MPI implementation level (1 or 2)
--with-mpi-includes=FLAGS MPI include flags
--with-mpi-libs=LIBS MPI libraries to append at the link stage
--with-mpi-runner=PROG Full path to the MPI runner program

16

https://bugs.launchpad.net/abinit/+filebug

2.7. External libraries

If --enable-mpi is left unset, there are 2 ways of enabling the build of parallel binaries:
either by using the --with-mpi-prefix option, or by specifying MPI-capable compilers from
the command line, through the CC (C compiler), CXX (C++ compiler) and FC (Fortran
compiler) environment variables. Please note that you have to specify --with-mpi-runner
manually in the latter case.

If "--enable-mpi" is set to "yes", the parallel code will be built only if a usable MPI im-
plementation can be detected. If the "--with-mpi-prefix" option is provided, enable_mpi
is automatically set to "yes" and the build system tries to find a usable generic MPI
installation at the specified location very early during the configuration. If this step is
successful, the compilers and the runner provided by MPI are used in lieu of the user-
specified ones, and no further test is performed. If "--with-mpi-prefix" is not present, the
build of parallel code will be deactivated unless "--enable-mpi" is explicitely set to "yes".

If the first attempt fails, a second one is undertaken once the compilers have been
configured. The build system then checks whether the compilers are able to build MPI
source code natively, taking advantage of the user-specified parameters. If successful, a
MPI runner will be looked for using the PATH environment variable. If something goes
wrong, the build of parallel code will be automatically disabled. In such a case, and as
a last resort, the user may force the build through the use of "--enable-mpi=manual".

Additional levels of parallelization may be activated, though they are still experimental
and meant to be used by developers only:

• "--enable-mpi-io": parallel file I/O;

• "--enable-mpi-trace": parallel time tracing.

You will find a detailed description of all these options in the source package of ABINIT,
within the MPI support section of the " abinit/doc/build/config-template.ac" template.
We warmly recommend you to have a close look at this file and to use it as much as you
wish.

2.7. External libraries

The configure script of ABINIT provides a unified way of dealing with external libraries,
by means of a trigger (enable/disable) and two specifiers (for include and link flags) for
each package. Below the surface, things are however much more complex: some libraries
are required by ABINIT, others not; some are contained within the source package, oth-
ers are too big to be included; a few of them depend on other external libraries, which
may or may not be found within the package. The current situation is summarized in
table 2.2, and the corresponding options are described in table 2.3.

When a library is required and cannot be found outside the source package, the build
system systematically restores consistency by ignoring user requests and disabling the

17

2. The configure script

Library Internal Required Depends Note
bigdft yes no —
etsf-io yes no netcdf
etsf-xc yes no — Needs more testing
fftw no no —
fox yes no — Currently unsupported

linalg yes yes —
netcdf yes no —

wannier90 yes no — Test library for the plug-in feature

Table 2.2.: Specifications of the ABINIT libraries.

corresponding support.

Providing automatic external library detection lead to complicate the build system
too much, and jeopardized its maintainability. Hence we decided to aim at maximum
simplicity. This means that you need to provide the include and link flags yourself, just
as you would do when directly calling the compiler, e.g.:

./configure \
--enable-netcdf \
--with-netcdf-includes=\textquotedbl{}-I/opt/etsf/include/g95\textquotedbl{}

\
--with-netcdf-libs=\textquotedbl{}-L/opt/etsf/lib -lnetcdf\textquotedbl{}

2.8. Other options

The configure script provides a few more options. Though most of them will only be
used in specific situations, they might prove very convenient in these cases. The full list
of special options may be found in table 2.4.

The build system of ABINIT makes it possible to use config files to store your preferred
build parameters. A fully documented template is provided in the source code under
abinit/doc/build/config-template.ac, along with a few examples in abinit/doc/build/config-
examples/. After editing this file to suit your needs, you may save it as $HOME/.abinit/build/<hostname>.ac
to keep these parameters as per-user defaults. Just replace <hostname> by the name
of your machine, excluding the domain name. E.g.: if your machine is called my-
host.mydomain, you will save this file as $HOME/.abinit/build/myhost.ac. You may
put this file at the top level of an ABINIT source tree as well, in which case its defini-
tions will apply to this particular tree only. Using config files is highly recommended,
since it saves you from typing all the options on the command-line each time you build
a new version of ABINIT.

18

2.8. Other options

Option Description
--enable-bigdft Enable support for the BigDFT wavelet library

[default=yes]
--with-bigdft-includes Include flags for the BigDFT library
--with-bigdft-libs Library flags for the BigDFT library
--enable-etsf-io Enable support for the ETSF I/O library [de-

fault=no]
--with-etsf-io-includes Include flags for the ETSF I/O library
--with-etsf-io-libs Library flags for the ETSF I/O library
--enable-etsf-xc Enable support for the ETSF exchange-correlation

library [default=no]
--with-etsf-xc-includes Include flags for the XC library
--with-etsf-xc-libs Library flags for the ETSF XC library
--enable-fftw Enable support for the FFTW library [default=no]
--enable-fftw-threads Enable support for the threaded FFTW library

[default=no]
--with-fftw-libs Library flags for the FFTW library
--enable-fox Enable support for the FoX I/O library [de-

fault=no]
--with-fox-includes Include flags for the FoX I/O library
--with-fox-libs Library flags for the FoX I/O library
--with-linalg-libs Library flags for the linalg library
--enable-netcdf Enable support for the NetCDF I/O library [de-

fault=no]
--with-netcdf-includes Include flags for the NetCDF library
--with-netcdf-libs Library flags for the NetCDF library
--enable-wannier90 Enable support for the Wannier90 library [de-

fault=no]
--with-wannier90-includes Include flags for the Wannier90 library
--with-wannier90-libs Library flags for the Wannier90 library

Table 2.3.: External library options of ABINIT.

Option Description
--enable-config-file Read options from config files [default=yes]
--with-config-file=FILE Specify config file to read options from
--enable-cclock Use C clock for timings [default=no]
--enable-stdin Read file lists from standard input [default=yes]

Table 2.4.: Special options of ABINIT.

19

Part II.

Developers

21

3. Preprocessing macros

3.1. Propagating information to the source code

While many arguments of the configure script control the way ABINIT is built, some
of them --- in addition to the results of the tests performed at configure-time --- greatly
influence what will be built. In the latter case, the information has to be propagated
up to the source code, which is done by means of preprocessing macros. They are cre-
ated by the AC_DEFINE macro of Autoconf, or specified by the user on the command line.

Macros are (name,value) pairs allowing the mapping of a sequence to another. Names
are usually single words, while values usually range from simple numbers to very com-
plex sequences of instructions. During compilation, name is replaced by value every
time it is encountered, this process being called macro expansion. Special lines, starting
with the ’#’ character in C, allow for more operations on macros, like setting, unsetting
or tests. Last but not least, the concept of macro is not limited to any programming
language, and macros are indeed ubiquitous in the programming world.

The build of ABINIT leads to the creation of many preprocessing macros (73 in
ABINIT 5.5), which are stored in config.h. Besides command-line options, this file is
the only link between the build system and the source code of ABINIT, and this is the
reason why all of them must include it at their very beginning.

3.2. Naming conventions

As far as preprocessing directive names are concerned, ABINIT abides strictly by the
GNU Coding Standards. This means in particular that:

• all user-defined compiler directives must be upper case;

• all names must start with a letter;

• names may contain capital letters, digits and underscores only;

Directives related to features that may or may not be present depending on the configura-
tion must begin by the keyword HAVE_*, e.g. HAVE_CONFIG_H, HAVE_NETCDF,
HAVE_ETSF_XC, etc.

23

3. Preprocessing macros

3.3. If statements

If statements should all begin with ’#if’. We kindly ask you not to use ’#ifdef’, but
’#if defined’ instead. A line ending an if statement must contain the ’#endif’ key-
word only. The same holds for ’#else’.

Here is a typical example:

\#if defined HAVECONFIGH \#include \textquotedbl{}config.h\textquotedbl{}
\#endif

We thank you in advance for following these simple rules, as it will greatly simplify
the automatic checks and fixes of the source code.

3.4. Preprocessing macros of ABINIT 5

3.4.1. Generic macros

CONTRACT Design-by-contract code
HAVE_CONFIG_H Mandatory: use config.h if present

3.4.2. Architecture-related macros

OS_IRIX IRIX operating system
OS_LINUX Linux operating system
OS_MACOSX Mac OS X operating system
OS_WINDOWS DOS/Windows operating system
VMS VAX/VMS architecture

24

3.4. Preprocessing macros of ABINIT 5

3.4.3. Optional library macros

HAVE_COMPAQ_FFT HP/Compaq/DEC FFT library
HAVE_FFTW FFTW library
HAVE_FFTWTHREADS FFTW library (threaded version)
HAVE_FFTW3 FFTW3 library
HAVE_FFTW3THREADS FFTW3 library (threaded version)
HAVE_HP_MLIB HP mathematical library
HAVE_SCALAPACK SCALAPACK linear algebra library
HAVE_SGI_MATH SGI mathematical library
HAVE_IBM_ESSL IBM mathematical library
HAVE_IBM_ESSL_OLD IBM mathematical library (old version)
HAVE_NEC_ASL NEC mathematical library
HAVE_NETCDF NetCDF file I/O library
HAVE_BIGDFT BigDFT wavelet library
HAVE_ETSF_IO ETSF file I/O library
HAVE_FOX Fortran XML I/O library
HAVE_LIBXC Octopus exchange-correlation library

3.4.4. MPI macros

MPI macros may not be included in the config.h file, as it would preclude the build
of sequential code. They should be specified within the compiler command line. The
following table gives the full list of permitted MPI macros and the way they are managed.
Manual handling is done through the --with-mpi-cppflags option of configure.

Option Description Management
MPI MPI statements follow Build system
MPI1 MPI version 1 Manual
MPI2 MPI version 2 Manual
MPI3 MPI version 3 Manual
MPI_EXT MPI HTOR routines (?) Manual
MPI_FFT Parallel FFT Build system
MPI_IO Parallel I/O Build system
MPI_TRACE Timing within parallel routines Build system

25

3. Preprocessing macros

3.4.5. Compiler macros

FC_ABSOFT ABSoft Fortran compiler
FC_COMPAQ HP/Compaq/DEC Fortran compiler
FC_FUJITSU Fujitsu Fortran compiler
FC_GNU GNU Fortran compiler (gfortran)
FC_G95 G95 Fortran compiler (g95)
FC_HITACHI Hitachi Fortran compiler
FC_HP HP Fortran compiler
FC_IBM IBM XL Fortran compiler
FC_INTEL Intel Fortran compiler
FC_MIPSPRO SGI MipsPro Fortran compiler
FC_NAG NAGWare Fortran compiler
FC_NEC NEC Fortran compiler
FC_PGI PGI Fortran compiler
FC_SUN Sun Fortran compiler

The same holds for C and C++ compilers.

3.4.6. Fortran-specific macros

HAVE_FORTRAN_EXIT The Fortran compiler accepts exit()
USE_CCLOCK Use C clock for timings

26

3.4. Preprocessing macros of ABINIT 5

3.4.7. Renamed macros

Option Replaced by Version
__IFC FC_INTEL 5.1
ibm FC_IBM 5.1
NAGf95 FC_NAG 5.1
mpi MPI 5.1
MPIEXT MPI_EXT 5.1
TRACE MPI_TRACE 5.1
FFTW HAVE_FFTW 5.1
FFTWTHREADS HAVE_FFTWTHREADS 5.1
bim HAVE_IBM_ESSL 5.1
bmi HAVE_IBM_ESSL 5.1
cen HAVE_NEC_ASL, FC_NEC 5.1
dec_alpha FC_COMPAQ 5.1
hp HAVE_HP_MLIB, FC_HP 5.1
hpux HAVE_HP_MLIB 5.1
nec HAVE_NEC_ASL, FC_NEC 5.1
nolib HAVE_COMPAQ_FFT 5.1
sgi HAVE_SGI_MATH, FC_MIPSPRO 5.1
sr8k FC_HITACHI 5.1
vpp FC_FUJITSU 5.1
__VMS VMS 5.1
P6 i386 5.1
macosx OS_MACOSX 5.1
CHGSTDIO READ_FROM_FILE 5.1

3.4.8. Unmaintained macros

OPENMP OpenMP parallelism
T3E Cray T3E architecture
TEST_AIM Optional checks for AIM

3.4.9. Removed macros

The following preprocessing macros have been removed from the ABINIT source code.

27

3. Preprocessing macros

Option Last version Comments
OLD_INIT 4.6 Was used in src/04wfs/wfconv.F90 to initialize the

wavefunctions, and has been replaced for a long
time by a more efficient method.

PGIWin 4.6 The PGI Fortran compiler is no longer used to
build Abinit under Windows, since it is too buggy.

ultrix 4.6 Ultrix was an operating system based on a 4.2BSD
Unix with some features from System V. It was
first released in 1984. Its purpose was to provide
a DEC-supported native Unix for VAX. The last
major release of Ultrix was version 4.5 in 1995,
which supported DECstations and VAXen. There
were some subsequent Y2K patches. There has
been no ABINIT user on Ultrix quite some time.

28

4. Adding external libraries /
plug-ins

4.1. Overall procedure

For all the tasks to perform, just use the existing libraries as examples and tutorials as
soon as you have a doubt. All paths are given from the top source directory. Please
note that this procedure has been elaborated and complexified progressively and is now
being reworked in order to greatly simplify it.

1. Create a new directory in plugins/, with a short and explicit name.

2. Copy the tarball to the new directory and go there. Its name should be: <package_name>.tar.gz.
The package name may of course include a version number.

3. Create a RoboDOC header briefly describing the library. The file should have the
same name as the directory, plus leading and trailing underscores. Suggestion:
copy the one from lib/netcdf/ and start from it.

4. Create a makefile with the same name as the directory, plus a ".mk" extension.
It will tell the build system how to perform the various steps of the library build:
uncompress, configure, build, install. Suggestion: copy the one from lib/netcdf/
and use it as a starting point.

5. Create a abinit.amf file containing a list of additional files to clean. It will basically
consists in the libraries, binaries, headers and Fortran modules used by ABINIT.
Suggestion: use lib/netcdf/abinit.amf to see which is the format to follow.

6. Edit config/specs/extlibs.cf : add one line for your library following the specified
format. Put the most important module only in the second column if your library
has several C/C++ headers or Fortran modules. The name of the library should
be the same as for the directory.

7. Edit config/specs/libraries.cf :

a. in abinit_libs, add the library after the others it could depend on and
before the libraries depending on it;

29

4. Adding external libraries / plug-ins

b. in abilibs_specs, copy the "netcdf" line, changing only its name and re-
moving |ABI_LIB_INC if your library has no C/C++ header and no Fortran
module; here the order is external/internal, then alphabetical, so you should
add your library before the "defs" line;

c. describe the dependencies in abilibs_deps.

The name of the library should be the same as for the directory.

8. Edit config/specs/binaries.cf : add the library to the dependencies of every binary
that may use it; the line should be put before the libraries it depends on and
after the libraries that depend on it. The name of the library should be the same
as for the directory.

9. Edit config/specs/options.cf : add the --enable-* and --with-* options for your
library, with short and precise info strings. Use netcdf as a typical example.

10. Edit config.mk.in: add the build flags of the library at the end of the file. You
may copy/paste from another external library, yet be careful to change ALL the
references.

11. Edit config/m4/tricks.m4 : add a "tricky" macro at the end of the file. You may
leave it empty, just as many of them already are.

12. Edit configure.ac:

a. at the beginning, where external packages are declared;

b. at the end, where the external library macros are called.

Add the relevant information using what is there as examples.

13. Run config/scripts/makemake, and watch carefully any possible error message.

14. Run configure, and watch carefully any possible error message.

15. Run make, and watch carefully any possible error message.

4.2. The library makefile

The build system expects a few things from the makefile <lib_name>.mk managing the
package stored in <package_name>.tar.gz :

• it should include config.mk, in order to transmit the build parameters to the pack-
age’s own build system;

• it should uncompress in lib/<lib_name>/<package_name>, and thus move the
uncompressed directory afterwards if it not the case (see lib/fox/fox.mk for an
example);

30

4.3. Fine-tuning abinit.amf

• it should install in lib/<lib_name>/tmp, so that the build system of ABINIT may
import all required data by itself if the package is managed by the Autotools.

Please read all the library makefiles contained within ABINIT before writing yours, this
might help you a lot.

4.3. Fine-tuning abinit.amf

Once you manage to build your library properly, run a make clean from within and add
all remaining files that should have been swept off to the list contained in abinit.amf.

31

Part III.

Maintainers

33

5. Extending the build system

5.1. Prerequisites

In order to efficiently tweak the build system, you will need to have a good experience
of some basic Unix utilities: cat, grep, sed, awk, cut, tr, tee, wc. A long familiarity
with ABINIT and an active participation to the developments occuring within the last
six months, though mandatory, will not suffice. You should already be fluent in the
following areas as well:

• Bourne-type shell scripting
(http://en.wikipedia.org/wiki/Bourne_shell);

• Perl scripting
(http://en.wikipedia.org/wiki/Perl);

• Python scripting
(http://en.wikipedia.org/wiki/Python_%28programming_language%29);

• M4 scripting
(http://en.wikipedia.org/wiki/M4_%28computer_language%29);

• Makefile writing
(http://en.wikipedia.org/wiki/Makefile);

• Link editing
(http://en.wikipedia.org/wiki/Linker);

• Regular expression designing
(http://en.wikipedia.org/wiki/Regular_expression).

Just as when developing for ABINIT, you will need a fully working installation of the
GNU Autotools. And here is what distinguishes the maintainer from the developer:
you will need to know how they work and understand their principles. Their respective
documentations may be found at the following addresses:

• Autoconf −→ http://www.gnu.org/software/autoconf/manual/

• Automake −→ http://sources.redhat.com/automake/automake.html

• Libtool −→ http://www.gnu.org/software/libtool/manual.html

35

http://en.wikipedia.org/wiki/Bourne_shell
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/M4_%28computer_language%29
http://en.wikipedia.org/wiki/Makefile
http://en.wikipedia.org/wiki/Linker
http://en.wikipedia.org/wiki/Regular_expression
http://www.gnu.org/software/autoconf/manual/
http://sources.redhat.com/automake/automake.html
http://www.gnu.org/software/libtool/manual.html

5. Extending the build system

We strongly urge you to read them if you want to know what you are doing.

Last but not least, you will need to have Bazaar (http://bazaar-vcs.org/) installed on
your development machine, since the delicate character of your contributions will require
real-time interactions with other maintainers and/or developers, be it for bug fixing or
testing.

5.2. Adding scripts

If your extension influences exclusively the pre-build stage of ABINIT, i.e. it prepares the
way for the Autotools, you may add it in the form of a script in ~abinit/config/scripts/.
Please follow the conventions already adopted for the other scripts. When done, do not
forget to add a call to your script in ~abinit/config/scripts/makemake, and remember
that makemake expects to be called from the top-level directory of the source tree.

If your script is producing M4 macros, the names of the files containing them must
be prefixed by "auto-".

5.3. Adding M4 macros

When you want to propagate information up to the Makefiles of ABINIT, the recom-
mended way to extend the build system is by writing M4 macros. The best practice
is to create a new file in ~abinit/config/m4/, following the conventions adopted for the
other files. If at a later time your contribution is approved, it may be redispatched into
other files.

5.4. Editing configure.ac

The configure.ac file is the spinal cord of the build system. Every single character of
this file plays a well-defined role, and is present for a carefully-thought logical reason.
In particular, the order of the lines is of critical importance to the proper functioning of
the whole build system. That is why this file should only be edited with extreme care
by persons having a good knowledge of shell-scripts, M4, Autoconf, Automake, Libtool
and the ABINIT build system. Messing-up with the instructions present there without
a sufficient experience in these matters will for sure lead to catastrophic consequences,
and may even result in massive loss of data. To summarize, YOU EDIT THIS FILE
AT YOUR OWN RISKS. Believing you are more clever than the designers of the
ABINIT build system will not save you.

The configure script is generated from configure.ac by Autoconf. As such, configure
should NEVER EVER been edited.

36

http://bazaar-vcs.org/

	Users
	Overview of the build system
	Main objectives
	Underlying concepts

	The configure script
	Running configure
	Environment variables
	The configuration process
	Options provided by Autoconf
	Compiler options
	Debugging
	Optimization
	Hints
	64-bit architectures
	Overriding the build-system settings

	MPI options
	External libraries
	Other options

	Developers
	Preprocessing macros
	Propagating information to the source code
	Naming conventions
	If statements
	Preprocessing macros of ABINIT 5
	Generic macros
	Architecture-related macros
	Optional library macros
	MPI macros
	Compiler macros
	Fortran-specific macros
	Renamed macros
	Unmaintained macros
	Removed macros

	Adding external libraries / plug-ins
	Overall procedure
	The library makefile
	Fine-tuning abinit.amf

	Maintainers
	Extending the build system
	Prerequisites
	Adding scripts
	Adding M4 macros
	Editing configure.ac

