
Representation and conversion of the set of

wavefunctions

(X. Gonze, Y. Suzukawa, M. Mikami)

July 2, 2013

1 The block of wavefunctions for one k-point
and one spin-polarization

* We will now consider a wavefunction as an object made of 2*npw k*nspinor

double precision numbers, whose signification and use will not be described here.

* npw k is an integer number, that may vary from k-point to k-point, while
nspinor will be 1 or 2, and will not vary in the set of wavefunction.

* A block of wavefunction is made of nband k wavefunctions, considered
for one specific k-point and spin-polarization. The number of double precision
coefficients in a block of WFs is 2*npw k*nspinor*nband k.

* The set of wavefunctions is made of all the blocks for different k-points
and spin-polarizations. The number of spin-polarization, nsppol, can be 1 or
2. Note that nsppol=2 and nspinor = 2 are mutually exclusive.
The number of k-points, nkpt can be as small as 1, but can also be a large
number, bigger than 1000. There must be the same number of k-points for
both spin-polarizations.

* As npw k and nband k can vary with the k-point (and polarization for
nband k), we have arrays

npwarr(1 : nkpt, 1) −→ npw k = npwarr(ikpt, 1)

nband(1 : nkpt ∗ nsppol) −→ nband k = nband(ikpt + (isppol− 1) ∗ nkpt)

2 Eigenvalues and occupation numbers

1

* At each k-point and spin-polarization, there is also a set of eigenvalues
and a set of occupation numbers, in the Ground-State case (formeig = 0) ;

eig k(1:nband k)

occ k(1:nband k)

and, in the Response-Function case (formeig = 1), a complex matrix of eigen-
values

eig k(1:2*nband k**2)

3 Storage of wavefunctions : disk file

The disk files are made of a header, followed by the blocks of wavefunctions,
eigenvalues (and occupation numbers, in the ground-state case) for each k-point
and spin-polarization, then some information on the history of atomic positions
and forces.
The part related to the wavefunctions block is written as follows :
do isppol= 1, nsppol

do ikpt = 1, nkpt

write(unit) npw k*nspinor, nband k

if(formeig = = 0) then

write(unit) eig k(1:nband k), occ k(1:nband k)

end if

do iband = 1, nband k

if(formeig = = 1) then

write(unit) eig k(1:2*nband k)

end if

write(unit) wavef k(1:2, 1:npw k*nspinor, iband)

enddo ! iband

enddo ! ikpt

enddo ! isppol

where :
formeig = 0 for ground-state wfs, and = 1 for response function
npw k, nband k, eig k, occ k, wavef k are related to one k-point and spin-
polarization, and vary with them (this is not shown explicitly in the above
description).

4 Storage of wavefunctions : core memory (se-
quential case)

* In order to describe the storage of wavefunctions, we adopt the same
convention on the meaning of npw k, nband k, eig k, occ k and wavef k.

2

We have to distinguish two cases : either the full set of wave function is kept
in memory (mkmem = nkpt), or only one block of wavefunction is kept in memory
(mkmem = 0). The intermediate case, were a subset of the wavefunctions would
be kept in core memory, has no advantage with respect to one or the other, and
has not been allowed.

* If mkmem = nkpt, the wavefunctions are kept in the array cg, declared as
double precision :: cg(2,mpw*nspinor*mband*mkmem*nsppol)

where mpw is the maximum number of plane waves for all k points
mband is the maximum number of bands for all k points.

The detailed storage is :
icg = 0

do isppol = 1, nsppol

do ikpt = 1, nkpt

do iband = 1, nband k

do ipwsp = 1, npw k*nspinor

index = ipwsp + (iband - 1) * npw k * nspinor

cg(1:2, index + icg) = wavef k(1:2, ipwsp, iband)

enddo

enddo

icg = icg + npw k * nspinor * nband k

enddo

enddo

* If mkmem = 0, the wavefunctions are kept on disk, and the block of wavefunc-
tions related to one k-point and spin-polarization is read in the array cg disk,
declared as
double precision :: cg disk (2, npw k * nspinor * nband k)

reallocated for each block, with the correct dimensions.
The self-consistent update of wavefunctions will actually involve two disk

files. During one “step” of the SCF procedure, the “old” wavefunctions are
contained in a first disk file, that is read block of wavefunctions by block of
wavefunctions, while the “new” wavefunctions are written on another disk file :

* Independently of the value of mkmem, the eigenvalue and occupation num-
bers are kept in core memory.
For the occupation numbers, one has the array occ
double precision :: occ (mband * nkpt * nsppol)

with detailed storage
bantot = 0

do isppol = 1, nsppol

do ikpt = 1, nkpt

occ (1 + bantot : nband k + bantot) = occ k (1:nband k)

bantot = bantot + nband k

enddo

enddo

3

* The storage of eigenvalues, in the ground-state case (formeig = 0) is
perfectly identical to the one of occupation numbers, in the array eigen :
double precision :: eigen (mband * nkpt * nsppol)

For the response-function case, we have matrices of eigenvalues :
double precision :: eigen (2 * mband **2 * nkpt * nsppol)

ban2tot = 0

do isppol = 1, nsppol

do ikpt = 1, nkpt

eigen(1+ban2tot: 2*nband k**2 + ban2tot) = eig k(1:2*nband k**2)

ban2tot = ban2tot + 2*nband k**2

enddo

enddo

5 Storage of wavefunctions : core memory (par-
allel case)

* In the parallel case, the storage of wavefunctions is spread on the different
processors, while all processors have a copy of the arrays eigen and occ, whose
storage is not modified compared to the sequential case. We will thus focus on
the wavefunctions.

* The fundamental question is : does the present processor treat this k-point
and spin-polarization ? If yes, the corresponding block will be in core memory.
If no, it will not. In the parallel case, it might be interesting to have mkmem

lower than nkpt, as soon as the number of k points to be treated by a processor

4

is lower or equal to mkmem. We still have the array cg declared as
double precision :: cg(2, mpw * nspinor * mband * mkmem * nsppol)

with detailed storage :
icg = 0

do isppol = 1, nsppol

do ikpt = 1, nkpt

if (‘‘(ikpt, isppol) not treated by the present processor’’) cycle

do iband = 1, nband k

do ipwsp = 1, npw k * nspinor

index = ipwsp + (iband-1) * npw k * nspinor

cg (1:2,index + icg) = wavef k (1:2, ipwsp, iband)

enddo

enddo

icg = icg + npw k * nspinor * nband k

enddo

enddo

* Let us specify the meaning of “(ikpt,isppol) not treated by the present
processor”
There are two parallel modes. Either the parallelism is done with respect to
k-points only, or it is allowed with respect to k-points and bands. In the present
status of ABINIT (v3.2), in the ground-state case, the parallelism is done only
with respect to k-points, while in the response-function case, it is done with
respect to k-points and bands. The user has no control yet on this choice.

* The case paralbd = 0 (no parallelism over the bands)
(Warning : Should be updated ! similar to the case paralbd = 1 in v3.2).
The attribution of a k-point for some spin-polarization is computed in the rou-
tine distrb.f, and generates an array kpt distrib(1:nkpt) giving for each
k-point, the number of the processor that treats it. This number, for each pro-
cessor, is obtained through a call to the MPI routine MPI COMM RANK, and
stored in the variable me. The condition for this k-point ikpt to be treated by
the processor me is thus :
if (kpt distrb(ikpt) == me) then ...

* The case paralbd = 1 (parallelism over bands is allowed)
In this case, some bands of a same k-point can be treated by different processors.
However, for different reasons, the processors that treat bands belonging to a
k-point need to know all the wavefunctions of this k-point. Thus one block of
wavefunction for one k-point will be copied on different processors.

The attribution of a band of some k-point, for some spin-polarization, is com-
puted in the routine distrb2.f, and generates an array proc distrb (1:nkpt,

1:mband) for each spin-polarization, giving for each k-point and band, the num-
ber of the processor that treats it.

The condition, for the processor me, to contain the block of wavefunctions
associated to the k-point ikpt, is to have at least one band attributed to it :

5

if (minval(abs(proc distrb(ikpt, 1:nband k)-me))=0) then ...

(this is a very condensed F90 formulation !)

6 Reading and Conversion of wavefunctions :
principles [routine inwffil.f]

* We have seen in the document Data structures 1WF, page 7, how to derive
the wavefunction characterized by nspinor, kpt, kg, and istwfk, from some
other wavefunction with different parameters. Here, we consider the conversion
of blocks of wavefunctions, for which the additional parameters nband k, nkpt
and nsppol are present, and can be varied.

* Typically, the starting wavefunctions are on a disk file, and they must
generate other wavefunctions, either in core memory or on another disk file. The
treatment will differ in those two cases, especially because of the core memory
management. In this operation, the goal is not to use more memory than in the
rest of the code! Efficiency is a secondary concern, in the sequential version. It
is more important in the parallel version, however, as we will see later.

* Thus, it is not possible to create two arrays with dimensions
cg1 (2, mpw1 * nspinor1 * mband1 * mkmem1 * nsppol1)

cg2 (2, mpw2 * nspinor2 * mband2 * mkmem2 * nsppol2)

and make the conversion in core memory :

disk
rendering−→ cg1

converting−→ cg2 ←− This is not possible !

↓ possibly write

disk

* The precise mechanism, with temporary arrays, will depend on the pa-
rameters mkmem, the sequential/parallel mode as well as the relative sizes of
the “input” and “output” blocks of wavefunctions for each k-point and spin-
polarization. See section 7 and 8.

* Independently of this mechanism, we describe the change of parameters
kpt, nband k and nsppol now. Be given an input set of nkpt1 k-point wave-
functions, with k-points kpt1(1:3, 1:nkpt1), from which the wavefunctions
at nkpt2 k-points kpt2(1:3, 1:nkpt2) must be deduced. For each k-point
ikpt2, we will find the k-point ikpt1 that allows to generate the closest k-
point, by use of symmetry operations and translations in reciprocal space, as
explained in Data structures 1WF page 8. This operation is done in the routine
listkk.f.

6

* Having assigned one ikpt1 to each ikpt2, we will also have to select
the proper spin-polarization isppol. When nsppol1 = nsppol2, there is no
problem, as isppol = 1 goes to isppol2 = 1, and, if nsppol1 = 2, we also have
isppol1 = 2 goes to isppol2 = 2.

If nsppol1 = 1 and nsppol2 = 2, we will simply use isppol1 = 1 for
both isppol2 = 1 and isppol2 = 2. [the conversion from spinor wf to spin-
polarization wfs is not coded yet]

If nsppol1 = 2 and nsppol2 = 1 (reduction from spin-polarized to spin-
unpolarized), we use isppol1 = 1 for isppol2 = 1. [the conversion from spin-
polarized wfs to spinor wfs is not coded yet]

* The number of bands needs to treated as well. From nband1 k starting
bands, one can generate at most nband12 = (nband1 k/nspinor1) * nspinor2

output bands, using the mechanism explained in Data structure 1WF, page 7,
if conversion of nspinor is needed.

We can have three cases : either

• nband12 = nband2 k In this case, we use all the input wavefunctions, and
generate all the wavefunctions that are needed.

• nband12 > nband2 k We have too many input bands, for the restricted
number that we need. We actually will read only nband12 min = (nband2 k/nspinor2)

* nspinor bands.

• nband12 < nband2 k We do not have enough starting bands. We will
complete the available data either by random numbers (if GS case) or
zeros (if RF case)

* The conversion of a block of wavefunctions to another block of wavefunc-
tions is done in the routine wfconv.f.

7 The reading and conversion of wavefunction
sets. Sequential case.

* We have to distinguish two cases : either the final wavefunctions must be
stored on disk, or they will be in core memory.

* Final storage on disk (from disk to disk) [routine newkpt.f] A temporary
array, dimensioned so as to be able to contain the biggest block of wavefunctions
of both the input and output files is created :
cg disk (2, mpw * mspinor * mband)

Note that mband does not take into account nband1 k, when it is sufficient
to use nband12 min, see page 7.

7

The blocks (ikpt2, isppol2) will be treated in order, while the blocks
(ikpt1,isppol1) will be accessed “randomly”, as needed to obtain all the
(ikpt2, isppol2) in turn: do isppol2 = 1, nsppol2

do ikpt2 = 1, nkpt2

· select (ikpt1, isppol1) needed for (ikpt2, isppol2)

· read the wavefunction (ikpt1, isppol1) from disks and store them in

cg disk

· convert the wavefunctions inside cg disk to (ikpt2, isppol2)

· write the wavefunctions to disk2

enddo

enddo

* Final storage in core memory (from disk to core, routines wfsinp.f and
newkpt.f)
In this case, we have an array
cg2(2, mpw2 * nsoinor2 * mband2 * mkmem2 * nsppol2)

We will be able to avoid declaring a temporary array cg disk only if each
of the block of input wavefunctions needs less storage than each correspond-
ing block in cg2, that is 2 * npw2 k * nspinor2 * band2 k double precision
numbers. In this case squeeze = 0, otherwise squeeze = 1. Unlike the disk to
disk case, the order in which the input wavefunctions are read is not dictated
by the need to write the output wavefunctions in order. On the contrary, we
will be able to read each input wavefunction block only once. The algorithm is
as follows :

Step1 (routine wfsinp.f)
do isppol1 = 1, nsppol1

do ikpt1 = 1, nkpt1

if ‘‘(ikpt1, isppol1) is needed to initialize some (ikpt2,isppol2)’’

then

· read (ikpt1, isppol1), store it in

cg disk if squeeze =1

cg2(ikp2 stor, isspol2 stor) if squeeze =0

do isspol2=1, nsspol2

do ikpt2=1, nkpt2

if squeeze = 0, copy from (ikpt2 stor, isppol2 stor) to (ikpt2,isspol2)

if squeeze = 1, copy from cg disk to (ikpt2, isppol2)

enddo

enddo

else skip (ikpt1, isspol1)

endif

enddo

enddo

Step2 (routine newkpt.f) do isppol2 = 1, nsppol2

do ikpt2 = 1, nkpt2

if squeeze = 0, convert the wavefunctions in block (ikpt2, isppol2)

8

to their final parameters

if squeeze = 1, do nothing (the conversion already took place in wfsinp.f)

enddo

enddo

8 The reading and conversion of wavefunction
sets. Parallel case

* In addition to the disk vs core memory choice, we have to distinguish the
case of “local input wavefunction files” vs “unique input wavefunction files”.
The input variable localrdwf can be used to select one mode or the other.

* In the first mode, localrdwf = 1 (local input wavefunction files), it is
supposed that each processor will access directly the input wavefunction file,
either because all processors have access to the same disk system on which one
copy of the file exist, or because a copy of the file has been placed on the disk
system of each processor. For a SMP machine, the access to the file by different
processors could compete and cause a degradation of performance. For a cluster,
there is no such problem, but a copy of the input file must be placed on the
local disk of each processor beforehand.

The organization of the reading and conversion is very similar to the sequen-
tial case. The major difference lies in the question : “does the present processor
treat this k-point and spin-polarization?” as explained in pages 4 to 5. The
appropriate selection rules, based on kpt distrb or proc distrb, will be used.

* In the second mode, localrdwf = 0 (“unique input wavefunction file”), it
is supposed that only one processor will read the input wavefunction file, and
will transmit the information to the other processors. This mode can be more
efficient on an SMP machine, and needs less file manipulation for a cluster.
However it has only been coded for the “disk to core memory” case.

Coming back to the 2 steps explained in page 8, the first one will be strongly
modified, while the second step will be adapted to whether the k-point and spin-
polarization belongs to the processor.

The temporary array cg disk will always be defined, and used for the trans-
fers of wavefunction blocks.

Step 1 (routine wfsinp.f)
For processor me = 0

do isppol1 = 1, nsppol1

do ikpt1 = 1, nkpt1

if ‘‘(ikpt1, isppol1) is needed to initialize some (ikpt2, isppol2)’’

then

· read (ikpt1, isppol1), store it in cg disk

· send it to all processors that need (ikpt1, isppol1) to

9

initialize one of their (ikpt2, isppol2)

do isppol2 = 1, nsppol2

do ikpt2 = 1, nkpt2

if ‘‘(ikpt2, isppol2) belongs to me and come from (ikpt1,isppol1)’’

then

if (squeeze = 0), copy from cg disk to (ikpt2, isppol2)

if (squeeze = 1), convert from cg disk to (ikpt2, isppol2)

end if

enddo

enddo

end if

enddo

enddo

(step 1)
For processor me 6= 0
do isppol = 1, nsppol1

do ikpt1 = 1, nkpt1

if ‘‘(ikpt2, isppol1) is needed to initialize some of my (ikpt2, isppol2)’’

then

· receive (ikpt1, isppol1) from processor me = 0

do isppol2 = 1, nsppol2

do ikpt2 = 1, nkpt2

if ‘‘(ikpt2, isppol2) belongs to me and come from (ikpt1, isppol1)’’

then

if (squeeze = 0), copy from cg disk to (ikpt2, isppol2)

if (squeeze = 1), convert from cg disk to (ikpt2, isppol2)

end if

enddo

enddo

end if

enddo

enddo

Step 2 (routine newkpt.f) for all processors
do isppol2 = 1, nsppol2

do ikpt2 = 1, nkpt2

if ‘‘(ikpt2, nsppol2) is treated by me’’ then

if squeeze = 0, convert the wavefunction in block (ikpt2, isppol2)

to their final parameters

if squeeze = 1, do nothing (the conversion already took place in wfsinp.f)

end if

enddo

enddo

10

