
    

   

 
 

SEVENTH FRAMEWORK PROGRAMME 
Research Infrastructures 

 
INFRA-2011-2.3.5 �– Second Implementation Phase of the European High 

Performance Computing (HPC) service PRACE 
 

 
 
 
 

PRACE-2IP 
 

PRACE Second Implementation Project 
 

Grant Agreement Number: RI-283493 
 

 
D8.1.3 

Prototype Codes Exploring Performance Improvements 
Final 

 
 

Version:  1.0 
Author(s):  Claudio Gheller and Will Sawyer (CSCS) 
Date: 23.12.2011 

 
 

 
 



D8.1.3 Prototype Codes Exploring Performance Improvements 

PRACE-2IP - RI-283493  23.12.2011 24

4 Material Science 
4.1 ABINIT 
ABINIT [37] is a package, delivered under the GNU General Public Licence (GPL), whose 
main program allows one to find from first principles the total energy, charge density, 
electronic structure and miscellaneous properties of systems made of electrons and nuclei 
(molecules and periodic solids) using pseudo-potentials and a plane-wave or wavelet basis. 
The basic theories implemented in ABINIT are Density-Functional Theory (DFT), Density-
functional perturbation theory (DFPT), Many-Body Perturbation Theory (the GW 
approximation and Bethe-Salpeter equation), and Time-Dependent Density Functional 
Theory. 

The main ABINIT program includes options to optimise the geometry according to the DFT 
forces and stresses, to perform molecular dynamics simulations using these forces, to 
determine transition states. It can also directly generate dynamical matrices, Born effective 
charges, dielectric tensors, and other linear and non-linear coupling quantities, based on 
Density-Functional Perturbation Theory. Excited states computations from Many-Body 
Perturbation Theory (the GW approximation) delivers band gaps generally in excellent 
agreement with experiment, unlike with DFT. Accurate Optical properties are obtained with 
excitonic effects within the Bethe-Salpether equation.  

Historically, ABINIT uses plane-waves to describe the electronic wave functions; it makes an 
intensive use of Fourier transforms, in particular when applying the local part of the 
Hamiltonian. In recent years, a development of wave functions utilising a wavelet basis has 
been introduced (for the ground state calculations), using wavelet transforms and a specific 
Poisson operator in real space. The implementation of wavelets has been achieved in the 
project named "BigDFT". During this project, a library of functions devoted to wavelets has 
been produced. It is used by ABINIT and can also be called from a standalone executable. 
The library and the standalone code are inseparable parts of the ABINIT project. 

ABINIT parallelisation is exclusively performed using the MPI library for the current stable 
version and for ground-state calculations. In a beta version, several time consuming code 
sections of the ground-state part have been ported to GPU. Even if it is already useable, this 
level of parallelisation is work in progress. 

As for the performance analysis phase [7], this “performance improvements exploration” 
phase is divided in three sections: 1-ground-state calculations using plane waves, 2-ground-
state calculations using wavelets, 3-Excited states calculations. 

4.1.1 Performance improvement: ground-state calculations using plane waves 
During the performance analysis phase [7], we identified the critical parts of the code: 

 LOBPCG algorithm and diagonalisation/orthogonalisation of wave functions: this 
routine solves the eigenvalue problem by minimisation using LOBPCG algorithm 

 Hamiltonian application: this routine applies Hamiltonian H (and overlap matrix S) to 
the wave-functions, divided in local operator, non-local operator and communications. 

 Forces: this routine computes forces on atoms. 

Several other sections have been investigated, but proved to be negligible compared to the 
previous sections. When looking at the code performances increasing the number of CPU 
cores, it clearly appears that the main obstacle to scalability is the application of LOBPCG 
algorithm. Only this part will be investigated here. 

 



D8.1.3 Prototype Codes Exploring Performance Improvements 

PRACE-2IP - RI-283493  23.12.2011 25

 
Figure 12: Repartition of time in ABINIT routines: on the left: varying the number of plane-wave CPU 
cores; on the right: varying the number of band CPU cores. 

4.1.1.1 Eigenvalue problem (LOBPCG) improvment: Prototype code improving load 
balancing; Prototype code using openMP parallelization. 
The Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) is an 
algorithm for finding the smallest eigenvalues and the corresponding eigenvectors of a 
symmetric positive definite generalized eigenvalue problem. 

As shown in the Figure 12, the time spent in the LOBPCG algorithm become predominant; a 
first (but deep) analysis of the corresponding code section demonstrated that this is essentially 
due to: 1- an unbalanced load, 2-communications in orthogonalizations/diagonalizations. 

In order to improve the performances, both the load balancing must be improved and the 
communication overhead must be reduced. 

The envisaged prototype codes are the following: 

1- Unbalanced load correction 
The unbalanced load is due to both “band” and “plane wave” distribution. In some 
disadvantageous cases, some cores can have a load 1.75 times larger than others. Plane 
wave vectors are incorrectly distributed among processors. Modifying their repartition, 
according to the physical system, can change this. Only a minor modification at the level 
of the distribution routine is required, but this has to be done with subtlety. 
The expected improvement depends on the treated physical system but can reach 50% on 
some disadvantageous cases. 
A prototype code applying the non-local Hamiltonian using a better band/plane wave 
distribution will be tested. 
2- Communications in diagonalizations/orthogonalizations 
The analysis shows that the implicated communications mainly are reductions in the 
orthogonalization and eigenvalue solvers. As there is no hope in decreasing the size of the 
matrices, the most promising evolution seems to be the use of shared memory 
parallelism… and openMP is the most natural choice. This choice is reinforced when 
looking at the architecture of some of the PRACE nodes. The TGCC-CURIE computer 
has a “large-nodes” partition with possibly 128 cores on each node. 

A prototype code of the orthogonalization routine using openMP will be tested. 
 

 

 



D8.1.3 Prototype Codes Exploring Performance Improvements 

PRACE-2IP - RI-283493  23.12.2011 26

4.1.1.2 Use of Graphics Processing Units improvement: Prototype code using GPU 
activation thresholds 
Use of Graphic Processing Units (GPU) will be available in the 6.12 version of ABINIT; this 
implementation is in beta stage. It uses NVIDIA CUDA library and is still evolving. Some 
additional “free of use“ packages have been also linked: NVidia cuBlas, NVidia cuFFT, 
MAGMA.  

The GPU implementation is fully compatible with all MPI levels of parallelisation except at 
the plane wave level. Performance tests show that it is only efficient when the computational 
load is large enough, i.e. when big physical systems are treated (large simulation cells and/or 
heavy materials). It is also demonstrated that the efficiency of the GPU code strongly depends 
on the performance ratio between CPU and GPU. 

In order to improve the performance, an envisaged modification is the (automatic) activation 
of the use of GPU code sections when thresholds are reached. This concerns the FFT and the 
LaPACK calls. For these two different parts, the thresholds are necessarily different. This 
implementation will be based on the automatic determination of thresholds according to the 
CPU/GPU architecture (only CPU/GPU ratio is important, taking transfers into account). This 
could be made by calling small FFT or LaPACK routines at start simultaneously on CPU and 
GPU and comparing the obtained performances. Then, according to the physical system size, 
the code could decide to use CPU or GPU version of the algorithms. 

A prototype code using an automatic process to determine whether GPU has to be used 
for FFT or LaPACK will be tested. 

4.1.2 Performance improvement: ground-state calculations using wavelets (BigDFT) 
BigDFT uses three level of optimization: 

 MPI over orbitals for coarse parallelization, 

 OpenMP for each orbital for fine optimization, 

 OpenCL to accelerate the code by means of GPUs. 

As in the plane wave version of ABINIT, we would first improve the OpenMP optimization 
of BigDFT especially for the exchange-correlation potential calculation (LibXC). This task is 
straightforward and should give some significant performance imporvements for small 
simulated systems. This will represent a gain between 10 and 20% depending on the number 
of threads. 

A prototype code calculating the exchange-correlation potential with openMP directives 
will be tested.  
The second task would be the improvement of the Poisson solver used both by BigDFT and 
ABINIT. The Poisson solver is based on FFT (Fast Fourier Transform) in order to calculate 
long range solution of the Poisson equation. The second task would be the use of OpenCL to 
calculate FFT on GPUs in order to accelerate the Poisson solver. This will represent a small 
gain for large systems but a substantial gain for small systems. The main interest is to have an 
OpenCL version of FFT is to accelerate also the exchange-correlation calculations in the 
specific case of hybrid functionals. In this case, the gain will be substantial for large systems. 
The calculation of the exchange-correlation for hybrid functionals represents 90% of the time. 
Using GPUs, we will reduce the execution time by a factor of 6. This will give a gain of 4 for 
the whole code. 



D8.1.3 Prototype Codes Exploring Performance Improvements 

PRACE-2IP - RI-283493  23.12.2011 27

We point out that this speedup could be also realised by means of OpenMP directives. The 
advantage of using GPU is important if we can use both OpenMP and GPU for different 
operations in the code. This will be realised in future developments. 

This OpenCL FFT could be also used in future developments for the excited states calculation 
which use a large number of FFTs. 

A prototype code will be tested with OpenCL FFT for all long range convolutions. 

4.1.3 Performance improvement: excited states calculations 
GW calculations are very CPU and memory demanding due to the large number of empty 
bands that are usually needed to converge the quasiparticle corrections. For this reason, the 
GW code of ABINIT distributes the full set of bands at the beginning of the run such that each 
Processing Unit can compute locally its own partial contribution without having to exchange 
data with the other MPI nodes involved in the run. Most of the computation is distributed 
among the node and a few collective MPI communications are required to gather the final 
results. 

The preliminary tests performed at the Barcelona Supercomputing Center have revealed that 
both the computation of the polarizability and of the self-energy matrix elements scale well up 
to 512 processors. The degradation of the total speedup observed for large number of 
processors is mainly due to: 

 The reading of the orbitals from the KSS file 

 The matrix inversion performed during the computation of the screening. 

 An unbalanced distribution of the work during the calculation of the exchange part of 
the self-energy. 

The envisaged prototype codes are the following: 

1- Reading of the orbitals 

In order to achieve better scaling in the I/O part, we plan to replace the plain Fortran-IO 
implementation with a new version based on MPI-IO. 

A prototype code using collective MPI-IO routines to read the orbitals will be tested.  
2- Matrix inversion 

The matrix inversion represents a serious bottleneck for large-scale applications since the 
CPU time quickly increases with the number of atoms.  

A prototype code using ScalaPACK routines to to perform the inversion will be 
tested. 
3- Unbalanced distribution 

The unbalanced distribution of the work in the calculation of the exchange part of the self-
energy can be avoided by resorting to a different distribution of the orbitals such that each 
node can participate in the computation. 

A prototype code employing a different MPI distribution of the orbitals will be 
implemented and tested.  

Another point worth stressing is that the present implementation is best suited for crystalline 
compounds where symmetries can be used to reduce the number of independent matrix 
elements that have to be computed explicitly. Isolated or disordered systems can be treated by 
means of the supercell technique but, in this case, the implementation is not optimal as the 



D8.1.3 Prototype Codes Exploring Performance Improvements 

PRACE-2IP - RI-283493  23.12.2011 28

non-scalable arrays whose size increases with the number of atoms will dominate the memory 
requirements.  

To overcome this limitation we plan to use a hybrid MPI-OpenMP implementation in which 
MPI is used at a coarse level in order to distribute the most memory-demanding arrays while 
OpenMP is employed for the fine grain parallelization.  

A prototype code employing OpenMP to parallelize the most CPU intensive parts (FFT, 
matrix algebra, loops,�…) will be implemented and tested.  

4.2 Quantum ESPRESSO 
Quantum ESPRESSO [38] is a distribution of software for atomistic simulations based on 
electronic structure using density-functional theory with a plane-wave basis set and pseudo 
potential. Main packages are PWscf (PW), a self-consistent electronic structure solver, and 
CP, a variable-cell Car Parrinello molecular dynamics package.  

The flowchart of the PW code is shown in the figure below. This is the typical flowchart of a 
density-functional calculation: in the self-consistency cycle, once the wave functions are 
calculated from the input, the diagonalization of the Hamiltonian matrix is performed for each 
k-point. As we showed in D8.1.2, this is certainly the most expensive part of the self-
consistency cycle. Then the charge density is calculated and from that new potentials are 
generated. 

 
Figure 13: Schematic UML activity diagram of PWscf code. 

The computational cost of the diagonalization of the hamiltonian matrix is strictly related to 
the physical properties of the system under investigation. PW implements two different 
methods to achieve this task: a Davidson method and the Conjugate Gradient method. Within 
this project we aim to focus on the Davidson method since it is widely used also in other 
Quantum chemistry codes. 


